
The derivative of \[{{\tan }^{-1}}\left( \dfrac{\sin x-\cos x}{\sin x+\cos x} \right)\] with respect to \[\dfrac{x}{2}\] where \[\left( x\in \left( 0,\dfrac{\pi }{2} \right) \right)\].
Answer
508.8k+ views
Hint: Let us assume that the value of the derivative of \[{{\tan }^{-1}}\left( \dfrac{\sin x-\cos x}{\sin x+\cos x} \right)\] with respect to \[\dfrac{x}{2}\]is equal to A. Let us assume the value of \[\dfrac{\sin x-\cos x}{\sin x+\cos x}\] is equal to B. We know that \[tan\left( A-B \right)=\dfrac{\operatorname{tanA}-\operatorname{tanB}}{1+\operatorname{tanA}\operatorname{tanB}}\]. By using this formula, we can find the value of B. Now we can find the value of the derivative of \[{{\tan }^{-1}}\left( \dfrac{\sin x-\cos x}{\sin x+\cos x} \right)\] with respect to \[\dfrac{x}{2}\]is equal to A.
Complete step-by-step answer:
From the question, it is clear that we should find the derivative of \[{{\tan }^{-1}}\left( \dfrac{\sin x-\cos x}{\sin x+\cos x} \right)\] with respect to \[\dfrac{x}{2}\]. Let us assume that the value of the derivative of \[{{\tan }^{-1}}\left( \dfrac{\sin x-\cos x}{\sin x+\cos x} \right)\] with respect to \[\dfrac{x}{2}\]is equal to A.
\[\begin{align}
& \Rightarrow A=\dfrac{d\left( {{\tan }^{-1}}\left( \dfrac{\sin x-\cos x}{\sin x+\cos x} \right) \right)}{d\left( \dfrac{x}{2} \right)} \\
& \Rightarrow A=\dfrac{\dfrac{d\left( {{\tan }^{-1}}\left( \dfrac{\sin x-\cos x}{\sin x+\cos x} \right) \right)}{dx}}{\dfrac{d\left( \dfrac{x}{2} \right)}{dx}}....(1) \\
\end{align}\]
Now let us simply the value of \[\dfrac{\sin x-\cos x}{\sin x+\cos x}\]. Let us assume the value of \[\dfrac{\sin x-\cos x}{\sin x+\cos x}\] is equal to B.
\[\Rightarrow B=\dfrac{\sin x-\cos x}{\sin x+\cos x}\]
Now let us take cosx as common on both numerator and denominator, then we get
\[\begin{align}
& \Rightarrow B=\dfrac{\dfrac{\sin x}{\cos x}-1}{\dfrac{\sin x}{\cos x}+1} \\
& \Rightarrow B=\dfrac{\tan x-1}{\tan x+1} \\
\end{align}\]
We know that the value of \[\tan \dfrac{\pi }{4}\] is equal to 1.
\[\Rightarrow B=\dfrac{\tan x-\tan \dfrac{\pi }{4}}{1+\tan x\tan \dfrac{\pi }{4}}\]
We know that \[tan\left( A-B \right)=\dfrac{\operatorname{tanA}-\operatorname{tanB}}{1+\operatorname{tanA}\operatorname{tanB}}\].
\[\Rightarrow B=\tan \left( x-\dfrac{\pi }{4} \right).....(2)\]
Let us assume the value of \[x-\dfrac{\pi }{4}\] is equal to t.
\[\Rightarrow t=x-\dfrac{\pi }{4}.....(3)\]
Now let us differentiate on both sides, then we get
\[\Rightarrow dt=dx....(4)\]
Now let us substitute equation (3) in equation (2), then we get
\[\Rightarrow B=\operatorname{tant}....(5)\]
Now let us substitute equation (4) and equation (5) in equation (1), then we get
\[\begin{align}
& \Rightarrow A=\dfrac{\dfrac{d\left( {{\tan }^{-1}}\left( \operatorname{tant} \right) \right)}{dt}}{\dfrac{d\left( \dfrac{x}{2} \right)}{dx}} \\
& \Rightarrow A=\dfrac{\dfrac{dt}{dt}}{\dfrac{d\left( \dfrac{x}{2} \right)}{dx}} \\
& \Rightarrow A=\dfrac{1}{\left( \dfrac{1}{2} \right)} \\
& \Rightarrow A=2.......(6) \\
\end{align}\]
From equation (6), it is clear that the value of A is equal to 2.
So, it is clear that the derivative of \[{{\tan }^{-1}}\left( \dfrac{\sin x-\cos x}{\sin x+\cos x} \right)\] with respect to \[\dfrac{x}{2}\] where \[\left( x\in \left( 0,\dfrac{\pi }{2} \right) \right)\] is equal to 2.
So, the correct answer is “Option D”.
Note: Students may have a misconception that \[tan\left( A+B \right)=\dfrac{\operatorname{tanA}-\operatorname{tanB}}{1+\operatorname{tanA}\operatorname{tanB}}\]. But we know that \[tan\left( A-B \right)=\dfrac{\operatorname{tanA}-\operatorname{tanB}}{1+\operatorname{tanA}\operatorname{tanB}}\]. So, this misconception should be avoided by students. If this misconception is followed, then it will interrupt the solution and will affect the final answer. So, this misconception should be avoided.
Complete step-by-step answer:
From the question, it is clear that we should find the derivative of \[{{\tan }^{-1}}\left( \dfrac{\sin x-\cos x}{\sin x+\cos x} \right)\] with respect to \[\dfrac{x}{2}\]. Let us assume that the value of the derivative of \[{{\tan }^{-1}}\left( \dfrac{\sin x-\cos x}{\sin x+\cos x} \right)\] with respect to \[\dfrac{x}{2}\]is equal to A.
\[\begin{align}
& \Rightarrow A=\dfrac{d\left( {{\tan }^{-1}}\left( \dfrac{\sin x-\cos x}{\sin x+\cos x} \right) \right)}{d\left( \dfrac{x}{2} \right)} \\
& \Rightarrow A=\dfrac{\dfrac{d\left( {{\tan }^{-1}}\left( \dfrac{\sin x-\cos x}{\sin x+\cos x} \right) \right)}{dx}}{\dfrac{d\left( \dfrac{x}{2} \right)}{dx}}....(1) \\
\end{align}\]
Now let us simply the value of \[\dfrac{\sin x-\cos x}{\sin x+\cos x}\]. Let us assume the value of \[\dfrac{\sin x-\cos x}{\sin x+\cos x}\] is equal to B.
\[\Rightarrow B=\dfrac{\sin x-\cos x}{\sin x+\cos x}\]
Now let us take cosx as common on both numerator and denominator, then we get
\[\begin{align}
& \Rightarrow B=\dfrac{\dfrac{\sin x}{\cos x}-1}{\dfrac{\sin x}{\cos x}+1} \\
& \Rightarrow B=\dfrac{\tan x-1}{\tan x+1} \\
\end{align}\]
We know that the value of \[\tan \dfrac{\pi }{4}\] is equal to 1.
\[\Rightarrow B=\dfrac{\tan x-\tan \dfrac{\pi }{4}}{1+\tan x\tan \dfrac{\pi }{4}}\]
We know that \[tan\left( A-B \right)=\dfrac{\operatorname{tanA}-\operatorname{tanB}}{1+\operatorname{tanA}\operatorname{tanB}}\].
\[\Rightarrow B=\tan \left( x-\dfrac{\pi }{4} \right).....(2)\]
Let us assume the value of \[x-\dfrac{\pi }{4}\] is equal to t.
\[\Rightarrow t=x-\dfrac{\pi }{4}.....(3)\]
Now let us differentiate on both sides, then we get
\[\Rightarrow dt=dx....(4)\]
Now let us substitute equation (3) in equation (2), then we get
\[\Rightarrow B=\operatorname{tant}....(5)\]
Now let us substitute equation (4) and equation (5) in equation (1), then we get
\[\begin{align}
& \Rightarrow A=\dfrac{\dfrac{d\left( {{\tan }^{-1}}\left( \operatorname{tant} \right) \right)}{dt}}{\dfrac{d\left( \dfrac{x}{2} \right)}{dx}} \\
& \Rightarrow A=\dfrac{\dfrac{dt}{dt}}{\dfrac{d\left( \dfrac{x}{2} \right)}{dx}} \\
& \Rightarrow A=\dfrac{1}{\left( \dfrac{1}{2} \right)} \\
& \Rightarrow A=2.......(6) \\
\end{align}\]
From equation (6), it is clear that the value of A is equal to 2.
So, it is clear that the derivative of \[{{\tan }^{-1}}\left( \dfrac{\sin x-\cos x}{\sin x+\cos x} \right)\] with respect to \[\dfrac{x}{2}\] where \[\left( x\in \left( 0,\dfrac{\pi }{2} \right) \right)\] is equal to 2.
So, the correct answer is “Option D”.
Note: Students may have a misconception that \[tan\left( A+B \right)=\dfrac{\operatorname{tanA}-\operatorname{tanB}}{1+\operatorname{tanA}\operatorname{tanB}}\]. But we know that \[tan\left( A-B \right)=\dfrac{\operatorname{tanA}-\operatorname{tanB}}{1+\operatorname{tanA}\operatorname{tanB}}\]. So, this misconception should be avoided by students. If this misconception is followed, then it will interrupt the solution and will affect the final answer. So, this misconception should be avoided.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

What is the function of copulatory pads in the forelimbs class 11 biology CBSE

Renal portal system of frog is significant in A Quick class 11 biology CBSE

How much is 23 kg in pounds class 11 chemistry CBSE
