Answer
Verified
437.4k+ views
Hint: Here, we will take that \[h = {\csc ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right)\] and \[g = \sqrt {1 - {x^2}} \]. Then we will use that when \[h\] is differentiated with respect to \[g\], we have to calculate the value of \[\dfrac{{dh}}{{dg}}\]. After differentiating \[h\] with respect to \[x\] and \[g\] with respect to \[x\], we will divide them to find the required value.
Complete step-by-step answer:
Let us assume that \[h = {\csc ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right)\] and \[g = \sqrt {1 - {x^2}} \].
We know that when \[h\] is differentiated with respect to \[g\], we have to calculate the value of \[\dfrac{{dh}}{{dg}}\].
Differentiating the equation \[h\] with respect to \[x\], we get
\[ \Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{d}{{dx}}\left( {{{\csc }^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right)} \right)\]
Using the property, \[{\csc ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{1}{x}} \right)\] in the above equation, we get
\[
\Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{d}{x}\left( {{{\sin }^{ - 1}}\left( {2{x^2} - 1} \right)} \right) \\
\Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{d}{x}\left( {\dfrac{\pi }{2} - {{\cos }^{ - 1}}\left( {2{x^2} - 1} \right)} \right) \\
\Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{d}{x}\left\{
\dfrac{\pi }{2} - 2{\cos ^{ - 1}}x{\text{ , if 0 < x < 1}} \\
\Rightarrow - \dfrac{{3\pi }}{2} + 2{\cos ^{ - 1}}x{\text{ , if - 1 < x < 0}} \\
\right. \\
\Rightarrow \dfrac{{dh}}{{dx}} = \left\{
\dfrac{d}{{dx}}\left( {\dfrac{\pi }{2} - 2{{\cos }^{ - 1}}x} \right){\text{ , if 0 < x < 1}} \\
\dfrac{d}{{dx}}\left( { - \dfrac{{3\pi }}{2} + 2{{\cos }^{ - 1}}x} \right){\text{ , if - 1 < x < 0}} \\
\right. \\
\]
Using the value, \[\dfrac{d}{{dx}}{\cos ^{ - 1}}x = \dfrac{1}{{\sqrt {1 - {x^2}} }}\] in the above equation, we get
\[ \Rightarrow \dfrac{{dh}}{{dx}} = \left\{
\dfrac{2}{{\sqrt {1 - {x^2}} }}{\text{ , if 0 < x < 1}} \\
\dfrac{{ - 2}}{{\sqrt {1 - {x^2}} }}{\text{ , if - 1 < x < 0}} \\
\right.{\text{ ......eq.(1)}}\]
Differentiating the equation \[g\] with respect to \[x\], we get
\[ \Rightarrow \dfrac{{dg}}{{dx}} = \dfrac{d}{{dx}}\left( {\sqrt {1 - {x^2}} } \right)\]
Using the property, \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\] in the above equation, we get
\[ \Rightarrow \dfrac{{dg}}{{dx}} = \dfrac{{ - x}}{{\sqrt {1 - {x^2}} }}{\text{ ......eq.(2)}}\]
Dividing the equation (1) by equation (2), we get
\[
\Rightarrow \dfrac{{dh}}{{dg}} = \left\{
\dfrac{2}{{\sqrt {1 - {x^2}} }} \times \dfrac{{\sqrt {1 - {x^2}} }}{{ - x}}{\text{ , if 0 < x < 1}} \\
\dfrac{{ - 2}}{{\sqrt {1 - {x^2}} }} \times \dfrac{{\sqrt {1 - {x^2}} }}{{ - x}}{\text{ , if - 1 < x < 0}} \\
\right. \\
\Rightarrow \dfrac{{dh}}{{dg}} = \left\{
\dfrac{2}{{ - x}}{\text{ , if 0 < x < 1}} \\
\dfrac{{ - 2}}{{ - x}}{\text{ , if - 1 < x < 0}} \\
\right. \\
\Rightarrow \dfrac{{dh}}{{dg}} = \left\{
- \dfrac{2}{x}{\text{ , if 0 < x < 1}} \\
\dfrac{2}{x}{\text{ , if - 1 < x < 0}} \\
\right. \\
\]
Since we know that \[0 < \dfrac{1}{2} < 1\], so it lies on the upper parts of the above equation.
Taking \[x = \dfrac{1}{2}\] in the above equation, we get
\[
\Rightarrow {\left. {\dfrac{{dh}}{{dg}}} \right|_{x = \dfrac{1}{2}}} = - \dfrac{2}{{\dfrac{1}{2}}} \\
\Rightarrow {\left. {\dfrac{{dh}}{{dg}}} \right|_{x = \dfrac{1}{2}}} = - 4 \\
\]
Note: You should be familiar with the basic properties of differentiation and trigonometric functions, like \[{\csc ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{1}{x}} \right)\] and \[\dfrac{d}{{dx}}{\csc ^{ - 1}}x = \dfrac{1}{{\sqrt {1 - {x^2}} }}\]. Students get confused to find the derivative and end up computing with respect to \[x\], which is wrong. A function can only be differentiated with respect to another function if and only if both the functions are dependent on the same variable. The key point is to use the differentiation properly to find the final answer.
Complete step-by-step answer:
Let us assume that \[h = {\csc ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right)\] and \[g = \sqrt {1 - {x^2}} \].
We know that when \[h\] is differentiated with respect to \[g\], we have to calculate the value of \[\dfrac{{dh}}{{dg}}\].
Differentiating the equation \[h\] with respect to \[x\], we get
\[ \Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{d}{{dx}}\left( {{{\csc }^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right)} \right)\]
Using the property, \[{\csc ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{1}{x}} \right)\] in the above equation, we get
\[
\Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{d}{x}\left( {{{\sin }^{ - 1}}\left( {2{x^2} - 1} \right)} \right) \\
\Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{d}{x}\left( {\dfrac{\pi }{2} - {{\cos }^{ - 1}}\left( {2{x^2} - 1} \right)} \right) \\
\Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{d}{x}\left\{
\dfrac{\pi }{2} - 2{\cos ^{ - 1}}x{\text{ , if 0 < x < 1}} \\
\Rightarrow - \dfrac{{3\pi }}{2} + 2{\cos ^{ - 1}}x{\text{ , if - 1 < x < 0}} \\
\right. \\
\Rightarrow \dfrac{{dh}}{{dx}} = \left\{
\dfrac{d}{{dx}}\left( {\dfrac{\pi }{2} - 2{{\cos }^{ - 1}}x} \right){\text{ , if 0 < x < 1}} \\
\dfrac{d}{{dx}}\left( { - \dfrac{{3\pi }}{2} + 2{{\cos }^{ - 1}}x} \right){\text{ , if - 1 < x < 0}} \\
\right. \\
\]
Using the value, \[\dfrac{d}{{dx}}{\cos ^{ - 1}}x = \dfrac{1}{{\sqrt {1 - {x^2}} }}\] in the above equation, we get
\[ \Rightarrow \dfrac{{dh}}{{dx}} = \left\{
\dfrac{2}{{\sqrt {1 - {x^2}} }}{\text{ , if 0 < x < 1}} \\
\dfrac{{ - 2}}{{\sqrt {1 - {x^2}} }}{\text{ , if - 1 < x < 0}} \\
\right.{\text{ ......eq.(1)}}\]
Differentiating the equation \[g\] with respect to \[x\], we get
\[ \Rightarrow \dfrac{{dg}}{{dx}} = \dfrac{d}{{dx}}\left( {\sqrt {1 - {x^2}} } \right)\]
Using the property, \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\] in the above equation, we get
\[ \Rightarrow \dfrac{{dg}}{{dx}} = \dfrac{{ - x}}{{\sqrt {1 - {x^2}} }}{\text{ ......eq.(2)}}\]
Dividing the equation (1) by equation (2), we get
\[
\Rightarrow \dfrac{{dh}}{{dg}} = \left\{
\dfrac{2}{{\sqrt {1 - {x^2}} }} \times \dfrac{{\sqrt {1 - {x^2}} }}{{ - x}}{\text{ , if 0 < x < 1}} \\
\dfrac{{ - 2}}{{\sqrt {1 - {x^2}} }} \times \dfrac{{\sqrt {1 - {x^2}} }}{{ - x}}{\text{ , if - 1 < x < 0}} \\
\right. \\
\Rightarrow \dfrac{{dh}}{{dg}} = \left\{
\dfrac{2}{{ - x}}{\text{ , if 0 < x < 1}} \\
\dfrac{{ - 2}}{{ - x}}{\text{ , if - 1 < x < 0}} \\
\right. \\
\Rightarrow \dfrac{{dh}}{{dg}} = \left\{
- \dfrac{2}{x}{\text{ , if 0 < x < 1}} \\
\dfrac{2}{x}{\text{ , if - 1 < x < 0}} \\
\right. \\
\]
Since we know that \[0 < \dfrac{1}{2} < 1\], so it lies on the upper parts of the above equation.
Taking \[x = \dfrac{1}{2}\] in the above equation, we get
\[
\Rightarrow {\left. {\dfrac{{dh}}{{dg}}} \right|_{x = \dfrac{1}{2}}} = - \dfrac{2}{{\dfrac{1}{2}}} \\
\Rightarrow {\left. {\dfrac{{dh}}{{dg}}} \right|_{x = \dfrac{1}{2}}} = - 4 \\
\]
Note: You should be familiar with the basic properties of differentiation and trigonometric functions, like \[{\csc ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{1}{x}} \right)\] and \[\dfrac{d}{{dx}}{\csc ^{ - 1}}x = \dfrac{1}{{\sqrt {1 - {x^2}} }}\]. Students get confused to find the derivative and end up computing with respect to \[x\], which is wrong. A function can only be differentiated with respect to another function if and only if both the functions are dependent on the same variable. The key point is to use the differentiation properly to find the final answer.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE