
The denominator of a rational number is greater than its numerator by 5. If the numerator is increased by 6 and denominator is decreased by 3, the number becomes \[\dfrac{5}{3}\]. Find the original number. Choose the correct option:
A. \[\dfrac{9}{4}\]
B. \[\dfrac{4}{9}\]
C. \[\dfrac{-4}{9}\]
D. None of the above.
Answer
593.1k+ views
Hint: Start with the rational number\[\dfrac{a}{b}\], then form the equations as per the statements given to get the value of a and b.
Complete step-by-step solution -
In the question, it is given that the denominator of a rational number is greater than its numerator by 5. So let the original rational number is \[\dfrac{a}{b}\]. So according to the question, we have:
\[\Rightarrow b=a+5………………….(eq\,\,1)\].
Now it is also given that if the numerator is increased by 6 and denominator is decreased by 3, the number becomes\[\dfrac{5}{3}\]. So the equation that we will get is:
\[\Rightarrow \dfrac{a+6}{b-3}=\dfrac{5}{3} ………….(eq\,\,2)\]
Now, using equation (1), we get;
\[\begin{align}
& \Rightarrow \dfrac{a+6}{(a+5)-3}=\dfrac{5}{3} \\
& \Rightarrow \dfrac{a+6}{a+2}=\dfrac{5}{3} \\
& \Rightarrow 3(a+6)=5(a+2) \\
& \Rightarrow (3a+18)=(5a+10) \\
& \Rightarrow (8)=(2a) \\
& \Rightarrow a=4 \\
\end{align}\]
Next from equation (1), we get b as follows:
\[\begin{align}
& \Rightarrow b=a+5\,\, \\
& \Rightarrow b=4+5\, \\
& \Rightarrow b=9\, \\
\end{align}\]
So, the original rational number is \[\dfrac{a}{b}=\dfrac{4}{9}\].
Note: The rational number is of the form\[\dfrac{a}{b}\], here\[b\ne 0\]. So we can say that a fraction number is also a rational number. Also, any integer can be written in the rational number form.
Complete step-by-step solution -
In the question, it is given that the denominator of a rational number is greater than its numerator by 5. So let the original rational number is \[\dfrac{a}{b}\]. So according to the question, we have:
\[\Rightarrow b=a+5………………….(eq\,\,1)\].
Now it is also given that if the numerator is increased by 6 and denominator is decreased by 3, the number becomes\[\dfrac{5}{3}\]. So the equation that we will get is:
\[\Rightarrow \dfrac{a+6}{b-3}=\dfrac{5}{3} ………….(eq\,\,2)\]
Now, using equation (1), we get;
\[\begin{align}
& \Rightarrow \dfrac{a+6}{(a+5)-3}=\dfrac{5}{3} \\
& \Rightarrow \dfrac{a+6}{a+2}=\dfrac{5}{3} \\
& \Rightarrow 3(a+6)=5(a+2) \\
& \Rightarrow (3a+18)=(5a+10) \\
& \Rightarrow (8)=(2a) \\
& \Rightarrow a=4 \\
\end{align}\]
Next from equation (1), we get b as follows:
\[\begin{align}
& \Rightarrow b=a+5\,\, \\
& \Rightarrow b=4+5\, \\
& \Rightarrow b=9\, \\
\end{align}\]
So, the original rational number is \[\dfrac{a}{b}=\dfrac{4}{9}\].
Note: The rational number is of the form\[\dfrac{a}{b}\], here\[b\ne 0\]. So we can say that a fraction number is also a rational number. Also, any integer can be written in the rational number form.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

Master Class 7 Social Science: Engaging Questions & Answers for Success

Master Class 7 Science: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 English: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Trending doubts
Convert 200 Million dollars in rupees class 7 maths CBSE

i What trees does Mr Wonka mention Which tree does class 7 english CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

What was the main occupation of early Aryans of rig class 7 social science CBSE

Write a letter to the editor of the national daily class 7 english CBSE

Welcome speech for Christmas day celebration class 7 english CBSE


