
The cubes of natural numbers are grouped as $\left( {{1}^{3}} \right),\left( {{2}^{3}},{{3}^{3}} \right),\left( {{4}^{3}},{{5}^{3}},{{6}^{3}} \right),\cdots $, then the sum of the numbers in the nth group is
[a] $\dfrac{{{n}^{2}}\left( {{n}^{2}}+1 \right)\left( {{n}^{2}}+4 \right)}{12}$
[b] $\dfrac{{{n}^{3}}\left( {{n}^{2}}+1 \right)\left( {{n}^{2}}+3 \right)}{8}$
[c] $\dfrac{{{n}^{3}}\left( {{n}^{2}}+1 \right)\left( {{n}^{2}}+4 \right)}{8}$
[d] $\dfrac{{{n}^{2}}\left( {{n}^{2}}+1 \right)\left( {{n}^{2}}+4 \right)}{16}$
Answer
580.5k+ views
Hint: Find the starting term of the nth group. Observe that the first group contains one element, the second group contains two elements and so on. Hence the number of elements used till we reach the nth group is $1+2+3+\cdots +n-1$. Use the fact that the sum of first n natural numbers is given by $\dfrac{n\left( n+1 \right)}{2}$. Hence find the starting element of the nth group and hence find the sum of the numbers in nth group. Use the fact that the sum of cubes of first n natural numbers is given by ${{\left[ \dfrac{n\left( n+1 \right)}{2} \right]}^{2}}$
Complete step-by-step answer:
The number of elements in the first group =1
The number of elements in the first and the second group combined = 1+2 = 3
The number of elements in the first, second and third group combined = 1+2+3 = 6
Observe that the second group starts with the cube of 1+1, the third group starts with the cube of 3+1 and so on.
Hence the nth group starts with the cube of $\left( 1+2+3+\cdots +n-1 \right)+1$
We know that the sum of first n-natural numbers is given by $\dfrac{n\left( n+1 \right)}{2}$
Hence, we have $1+2+3+\cdots +n-1=\dfrac{n\left( n-1 \right)}{2}$
Hence, we have nth group starts with the cube of $\dfrac{n\left( n-1 \right)}{2}+1$
Hence, the nth group is
$\left( {{\left( \dfrac{n\left( n-1 \right)}{2}+1 \right)}^{3}},{{\left( \dfrac{n\left( n-1 \right)}{2}+2 \right)}^{3}},\cdots ,{{\left( \dfrac{n\left( n-1 \right)}{2}+n \right)}^{3}} \right)$
Hence, we have sum of elements in the nth group is given by
${{S}_{n}}={{\left( \dfrac{n\left( n-1 \right)}{2}+1 \right)}^{3}}+{{\left( \dfrac{n\left( n-1 \right)}{2}+2 \right)}^{3}}+\cdots +{{\left( \dfrac{n\left( n-1 \right)}{2}+n \right)}^{3}}$
Adding and subtracting ${{1}^{3}}+{{2}^{3}}+{{3}^{3}}+\cdots +{{\left( \dfrac{n\left( n-1 \right)}{2} \right)}^{3}}$, we get
${{S}_{n}}=\sum\limits_{r=1}^{\dfrac{n\left( n-1 \right)}{2}+n}{{{r}^{3}}}-\sum\limits_{r=1}^{\dfrac{n\left( n-1 \right)}{2}}{{{r}^{3}}}$
We have $\dfrac{n\left( n-1 \right)}{2}+n=\dfrac{n}{2}\left( n-1+2 \right)=\dfrac{n\left( n+1 \right)}{2}$
Hence, we have
${{S}_{n}}=\sum\limits_{r=1}^{\dfrac{n\left( n+1 \right)}{2}}{{{r}^{3}}}-\sum\limits_{1}^{\dfrac{n\left( n-1 \right)}{2}}{{{r}^{3}}}$
We know that $\sum\limits_{r=1}^{n}{{{r}^{3}}}={{\left[ \dfrac{n\left( n+1 \right)}{2} \right]}^{2}}$
Hence, we have
${{S}_{n}}={{\left[ \dfrac{\left( \dfrac{n\left( n+1 \right)}{2} \right)\left( \dfrac{n\left( n+1 \right)}{2}+1 \right)}{2} \right]}^{2}}-{{\left[ \dfrac{\left( \dfrac{n\left( n-1 \right)}{2} \right)\left( \dfrac{n\left( n-1 \right)}{2}+1 \right)}{2} \right]}^{2}}$
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
Hence, we have
$\begin{align}
& {{S}_{n}}=\dfrac{1}{4}\left[ \left( \dfrac{n\left( n+1 \right)}{2} \right)\left( \dfrac{n\left( n+1 \right)}{2}+1 \right)-\left( \dfrac{n\left( n-1 \right)}{2} \right)\left( \dfrac{n\left( n-1 \right)}{2}+1 \right) \right]\left[ \left( \dfrac{n\left( n+1 \right)}{2} \right)\left( \dfrac{n\left( n+1 \right)}{2}+1 \right)+\left( \dfrac{n\left( n-1 \right)}{2} \right)\left( \dfrac{n\left( n-1 \right)}{2}+1 \right) \right] \\
& \Rightarrow {{S}_{n}}=\dfrac{{{S}_{1}}{{S}_{2}}}{4} \\
\end{align}$
In the first sum, we have
${{S}_{1}}=\left( \dfrac{n\left( n+1 \right)}{2} \right)\left( \dfrac{n\left( n+1 \right)}{2}+1 \right)-\left( \dfrac{n\left( n-1 \right)}{2} \right)\left( \dfrac{n\left( n-1 \right)}{2}+1 \right)$
Taking $\dfrac{n}{2}$ common, we get
${{S}_{1}}=\dfrac{n}{2}\left[ \left( n+1 \right)\left( \dfrac{n\left( n+1 \right)}{2}+1 \right)-\left( n-1 \right)\left( \dfrac{n\left( n-1 \right)}{2}+1 \right) \right]$
Hence, we have
$\begin{align}
& {{S}_{1}}=\dfrac{n}{2}\left[ \left( n+1 \right)\left( \dfrac{n\left( n+1 \right)}{2} \right)+n+1-\left( n-1 \right)\left( \dfrac{n\left( n-1 \right)}{2} \right)-n+1 \right] \\
& =\dfrac{n}{2}\left[ \dfrac{n}{2}\left( {{\left( n+1 \right)}^{2}}-{{\left( n-1 \right)}^{2}} \right)+2 \right] \\
& =\dfrac{n}{2}\left[ \dfrac{n}{2}\left( 4n \right)+2 \right] \\
& =n\left( {{n}^{2}}+1 \right) \\
\end{align}$
In the second sum, we have
${{S}_{2}}=\left( \dfrac{n\left( n+1 \right)}{2} \right)\left( \dfrac{n\left( n+1 \right)}{2}+1 \right)+\left( \dfrac{n\left( n-1 \right)}{2} \right)\left( \dfrac{n\left( n-1 \right)}{2}+1 \right)$
Taking $\dfrac{n}{2}$ common, we get
${{S}_{2}}=\dfrac{n}{2}\left[ \left( n+1 \right)\left( \dfrac{n\left( n+1 \right)}{2}+1 \right)+\left( n-1 \right)\left( \dfrac{n\left( n-1 \right)}{2}+1 \right) \right]$
Hence, we have
$\begin{align}
& {{S}_{1}}=\dfrac{n}{2}\left[ \left( n+1 \right)\left( \dfrac{n\left( n+1 \right)}{2} \right)+n+1+\left( n-1 \right)\left( \dfrac{n\left( n-1 \right)}{2} \right)+n-1 \right] \\
& =\dfrac{n}{2}\left[ \dfrac{n}{2}\left( {{\left( n+1 \right)}^{2}}+{{\left( n-1 \right)}^{2}} \right)+2n \right] \\
& =\dfrac{n}{2}\left[ \dfrac{n}{2}\left( 2{{n}^{2}}+2 \right)+2n \right] \\
& =\dfrac{n\left( {{n}^{3}}+3n \right)}{2} \\
& =\dfrac{{{n}^{2}}\left( {{n}^{2}}+3 \right)}{2} \\
\end{align}$
Hence, we have
$\begin{align}
& {{S}_{n}}=\dfrac{n\left( {{n}^{2}}+1 \right)\left( {{n}^{2}} \right)\left( {{n}^{2}}+3 \right)}{8} \\
& =\dfrac{{{n}^{3}}\left( {{n}^{2}}+1 \right)\left( {{n}^{2}}+3 \right)}{8} \\
\end{align}$
Hence option [b] is correct.
Note: Verification:
Check if it is correct for the first three groups
${{S}_{1}}=1$
Put n = 1 in the expression of ${{S}_{n}}$ , we get
${{S}_{1}}=\dfrac{1}{8}\left( 1+1 \right)\left( 1+3 \right)=1$
We have
${{S}_{2}}={{2}^{3}}+{{3}^{3}}=35$
Put n =2 in the expression of ${{S}_{n}}$, we get
${{S}_{2}}=\dfrac{8}{8}\left( 4+1 \right)\left( 4+3 \right)=35$
We have ${{S}_{3}}=\left( {{4}^{3}}+{{5}^{3}}+{{6}^{3}} \right)=64+125+216=405$
Put n =3 in the expression of ${{S}_{n}}$, we get
${{S}_{3}}=\dfrac{27}{8}\left( 9+1 \right)\left( 9+3 \right)=405$
Hence our answer is verified to be correct.
Complete step-by-step answer:
The number of elements in the first group =1
The number of elements in the first and the second group combined = 1+2 = 3
The number of elements in the first, second and third group combined = 1+2+3 = 6
Observe that the second group starts with the cube of 1+1, the third group starts with the cube of 3+1 and so on.
Hence the nth group starts with the cube of $\left( 1+2+3+\cdots +n-1 \right)+1$
We know that the sum of first n-natural numbers is given by $\dfrac{n\left( n+1 \right)}{2}$
Hence, we have $1+2+3+\cdots +n-1=\dfrac{n\left( n-1 \right)}{2}$
Hence, we have nth group starts with the cube of $\dfrac{n\left( n-1 \right)}{2}+1$
Hence, the nth group is
$\left( {{\left( \dfrac{n\left( n-1 \right)}{2}+1 \right)}^{3}},{{\left( \dfrac{n\left( n-1 \right)}{2}+2 \right)}^{3}},\cdots ,{{\left( \dfrac{n\left( n-1 \right)}{2}+n \right)}^{3}} \right)$
Hence, we have sum of elements in the nth group is given by
${{S}_{n}}={{\left( \dfrac{n\left( n-1 \right)}{2}+1 \right)}^{3}}+{{\left( \dfrac{n\left( n-1 \right)}{2}+2 \right)}^{3}}+\cdots +{{\left( \dfrac{n\left( n-1 \right)}{2}+n \right)}^{3}}$
Adding and subtracting ${{1}^{3}}+{{2}^{3}}+{{3}^{3}}+\cdots +{{\left( \dfrac{n\left( n-1 \right)}{2} \right)}^{3}}$, we get
${{S}_{n}}=\sum\limits_{r=1}^{\dfrac{n\left( n-1 \right)}{2}+n}{{{r}^{3}}}-\sum\limits_{r=1}^{\dfrac{n\left( n-1 \right)}{2}}{{{r}^{3}}}$
We have $\dfrac{n\left( n-1 \right)}{2}+n=\dfrac{n}{2}\left( n-1+2 \right)=\dfrac{n\left( n+1 \right)}{2}$
Hence, we have
${{S}_{n}}=\sum\limits_{r=1}^{\dfrac{n\left( n+1 \right)}{2}}{{{r}^{3}}}-\sum\limits_{1}^{\dfrac{n\left( n-1 \right)}{2}}{{{r}^{3}}}$
We know that $\sum\limits_{r=1}^{n}{{{r}^{3}}}={{\left[ \dfrac{n\left( n+1 \right)}{2} \right]}^{2}}$
Hence, we have
${{S}_{n}}={{\left[ \dfrac{\left( \dfrac{n\left( n+1 \right)}{2} \right)\left( \dfrac{n\left( n+1 \right)}{2}+1 \right)}{2} \right]}^{2}}-{{\left[ \dfrac{\left( \dfrac{n\left( n-1 \right)}{2} \right)\left( \dfrac{n\left( n-1 \right)}{2}+1 \right)}{2} \right]}^{2}}$
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
Hence, we have
$\begin{align}
& {{S}_{n}}=\dfrac{1}{4}\left[ \left( \dfrac{n\left( n+1 \right)}{2} \right)\left( \dfrac{n\left( n+1 \right)}{2}+1 \right)-\left( \dfrac{n\left( n-1 \right)}{2} \right)\left( \dfrac{n\left( n-1 \right)}{2}+1 \right) \right]\left[ \left( \dfrac{n\left( n+1 \right)}{2} \right)\left( \dfrac{n\left( n+1 \right)}{2}+1 \right)+\left( \dfrac{n\left( n-1 \right)}{2} \right)\left( \dfrac{n\left( n-1 \right)}{2}+1 \right) \right] \\
& \Rightarrow {{S}_{n}}=\dfrac{{{S}_{1}}{{S}_{2}}}{4} \\
\end{align}$
In the first sum, we have
${{S}_{1}}=\left( \dfrac{n\left( n+1 \right)}{2} \right)\left( \dfrac{n\left( n+1 \right)}{2}+1 \right)-\left( \dfrac{n\left( n-1 \right)}{2} \right)\left( \dfrac{n\left( n-1 \right)}{2}+1 \right)$
Taking $\dfrac{n}{2}$ common, we get
${{S}_{1}}=\dfrac{n}{2}\left[ \left( n+1 \right)\left( \dfrac{n\left( n+1 \right)}{2}+1 \right)-\left( n-1 \right)\left( \dfrac{n\left( n-1 \right)}{2}+1 \right) \right]$
Hence, we have
$\begin{align}
& {{S}_{1}}=\dfrac{n}{2}\left[ \left( n+1 \right)\left( \dfrac{n\left( n+1 \right)}{2} \right)+n+1-\left( n-1 \right)\left( \dfrac{n\left( n-1 \right)}{2} \right)-n+1 \right] \\
& =\dfrac{n}{2}\left[ \dfrac{n}{2}\left( {{\left( n+1 \right)}^{2}}-{{\left( n-1 \right)}^{2}} \right)+2 \right] \\
& =\dfrac{n}{2}\left[ \dfrac{n}{2}\left( 4n \right)+2 \right] \\
& =n\left( {{n}^{2}}+1 \right) \\
\end{align}$
In the second sum, we have
${{S}_{2}}=\left( \dfrac{n\left( n+1 \right)}{2} \right)\left( \dfrac{n\left( n+1 \right)}{2}+1 \right)+\left( \dfrac{n\left( n-1 \right)}{2} \right)\left( \dfrac{n\left( n-1 \right)}{2}+1 \right)$
Taking $\dfrac{n}{2}$ common, we get
${{S}_{2}}=\dfrac{n}{2}\left[ \left( n+1 \right)\left( \dfrac{n\left( n+1 \right)}{2}+1 \right)+\left( n-1 \right)\left( \dfrac{n\left( n-1 \right)}{2}+1 \right) \right]$
Hence, we have
$\begin{align}
& {{S}_{1}}=\dfrac{n}{2}\left[ \left( n+1 \right)\left( \dfrac{n\left( n+1 \right)}{2} \right)+n+1+\left( n-1 \right)\left( \dfrac{n\left( n-1 \right)}{2} \right)+n-1 \right] \\
& =\dfrac{n}{2}\left[ \dfrac{n}{2}\left( {{\left( n+1 \right)}^{2}}+{{\left( n-1 \right)}^{2}} \right)+2n \right] \\
& =\dfrac{n}{2}\left[ \dfrac{n}{2}\left( 2{{n}^{2}}+2 \right)+2n \right] \\
& =\dfrac{n\left( {{n}^{3}}+3n \right)}{2} \\
& =\dfrac{{{n}^{2}}\left( {{n}^{2}}+3 \right)}{2} \\
\end{align}$
Hence, we have
$\begin{align}
& {{S}_{n}}=\dfrac{n\left( {{n}^{2}}+1 \right)\left( {{n}^{2}} \right)\left( {{n}^{2}}+3 \right)}{8} \\
& =\dfrac{{{n}^{3}}\left( {{n}^{2}}+1 \right)\left( {{n}^{2}}+3 \right)}{8} \\
\end{align}$
Hence option [b] is correct.
Note: Verification:
Check if it is correct for the first three groups
${{S}_{1}}=1$
Put n = 1 in the expression of ${{S}_{n}}$ , we get
${{S}_{1}}=\dfrac{1}{8}\left( 1+1 \right)\left( 1+3 \right)=1$
We have
${{S}_{2}}={{2}^{3}}+{{3}^{3}}=35$
Put n =2 in the expression of ${{S}_{n}}$, we get
${{S}_{2}}=\dfrac{8}{8}\left( 4+1 \right)\left( 4+3 \right)=35$
We have ${{S}_{3}}=\left( {{4}^{3}}+{{5}^{3}}+{{6}^{3}} \right)=64+125+216=405$
Put n =3 in the expression of ${{S}_{n}}$, we get
${{S}_{3}}=\dfrac{27}{8}\left( 9+1 \right)\left( 9+3 \right)=405$
Hence our answer is verified to be correct.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

