The cross product of two vectors gives zero when the vectors enclose an angle of
A. ${90^0}$
B. ${180^0}$
C. ${45^0}$
D. ${120^0}$
Answer
279.9k+ views
Hint: To answer this question, we first need to understand what is a vector. A vector is a two-dimensional object with both magnitude and direction. A vector can be visualized geometrically as a guided line segment with an arrow indicating the direction and a length equal to the magnitude of the vector.
Complete step by step answer:
Cross product: The cross product a$ \times $b is defined as a vector c that is perpendicular (orthogonal) to both a and b, with a magnitude equal to the area of the parallelogram that the vectors span and a direction given by the right-hand law.Cross product formula of two vectors,
$\overrightarrow a \times \overrightarrow b = a.b.\sin \theta $
Here $\overrightarrow a $ and $\overrightarrow b $ are the two vectors and $\theta $ is the angle between two vectors. Here $a$ and $b$ are the magnitudes of both vectors
As given in the question, the cross product is zero. Therefore,
$a.b.\sin \theta = 0$
Now as we know that magnitude can’t be zero
So, to make this product zero $\sin \theta $must be zero
So, $\sin \theta = 0$
As $\sin \theta $=0 so the angle must be ${0^0}$ or ${180^0}$.
As given in this question, the option available is ${180^0}$.
Hence, the correct answer is option B.
Note: In three-dimensional spaces, the cross product, area product, or vector product of two vectors is a binary operation on two vectors. It is denoted by the symbol ($ \times $). A vector is the cross product of two vectors.
Complete step by step answer:
Cross product: The cross product a$ \times $b is defined as a vector c that is perpendicular (orthogonal) to both a and b, with a magnitude equal to the area of the parallelogram that the vectors span and a direction given by the right-hand law.Cross product formula of two vectors,
$\overrightarrow a \times \overrightarrow b = a.b.\sin \theta $
Here $\overrightarrow a $ and $\overrightarrow b $ are the two vectors and $\theta $ is the angle between two vectors. Here $a$ and $b$ are the magnitudes of both vectors
As given in the question, the cross product is zero. Therefore,
$a.b.\sin \theta = 0$
Now as we know that magnitude can’t be zero
So, to make this product zero $\sin \theta $must be zero
So, $\sin \theta = 0$
As $\sin \theta $=0 so the angle must be ${0^0}$ or ${180^0}$.
As given in this question, the option available is ${180^0}$.
Hence, the correct answer is option B.
Note: In three-dimensional spaces, the cross product, area product, or vector product of two vectors is a binary operation on two vectors. It is denoted by the symbol ($ \times $). A vector is the cross product of two vectors.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Define absolute refractive index of a medium

Which of the following would not be a valid reason class 11 biology CBSE

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What is meant by monosporic development of female class 11 biology CBSE

Trending doubts
What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the past tense of read class 10 english CBSE

What is pollution? How many types of pollution? Define it

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How many crores make 10 million class 7 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE
