Answer
Verified
453.9k+ views
Hint: We will use the formula to calculate the amount A given by $A = P{\left( {1 + \dfrac{R}{{100}}} \right)^n}$ where P is the principal amount, R is rate of interest, n is the number of years. We will convert n = 2 years 73 days in years only using the formula: $x{\text{ years y days = }}x \cdot \dfrac{y}{{365}}{\text{ years}}$ and rate of interest R as a whole fraction. Then, compound interest (CI) will be given by: $CI = A - P$.
Complete step-by-step answer:
We are required to calculate the Compound Interest (CI) on Rs.20480 at rate of interest $6\dfrac{1}{4}\% $ per annum for a time period of 2 years 73 days.
We know that CI is given by $CI = A - P$ where A is the amount and P is the principal.
Here, P is Rs.20480 and amount A can be calculated by the formula: $A = P{\left( {1 + \dfrac{R}{{100}}} \right)^n}$, where R is the rate of interest and n is the time period.
Now, R = rate of interest = $6\dfrac{1}{4}\% $. We can write this equation, by using the formula: $x\dfrac{y}{z} = \dfrac{{(xz) + y}}{z}$as: $6\dfrac{1}{4}\% = \dfrac{{25}}{4}\% $
And, n = time period = 2 years 73 years. We can write the time period using the formula: $x{\text{ years y days = }}x \cdot \dfrac{y}{{365}}{\text{ years}}$ as $2{\text{ years 73 years = }}2\dfrac{{73}}{{365}} = 2\dfrac{1}{5}{\text{ years}}$
Substituting the values of P, R and n in the equation of A, we get
$ \Rightarrow A = P{\left( {1 + \dfrac{R}{{100}}} \right)^n} = 20480{\left( {1 + \dfrac{{25}}{{4\left( {100} \right)}}} \right)^2}\left( {1 + \dfrac{{\dfrac{{25}}{4} \cdot \dfrac{1}{5}}}{{100}}} \right)$ (since n is a fraction here so, we have first used for time period of 2 years and then for 73 days or $\dfrac{1}{5}{\text{ years}}$)
$
\Rightarrow A = 20480{\left( {1 + \dfrac{1}{{16}}} \right)^2}\left( {1 + \dfrac{1}{{80}}} \right) = 20480{\left( {\dfrac{{17}}{{16}}} \right)^2}\left( {\dfrac{{81}}{{80}}} \right) \\
\Rightarrow A = 20480\left( {\dfrac{{23409}}{{20480}}} \right) = Rs.23409 \\
$
Hence, the value of the amount is Rs.23409 and principal P is Rs.20480.
Therefore, the value of the compound interest: $CI = A - P$ will be:
$
\Rightarrow CI = Rs.23409 - Rs.20480 \\
\Rightarrow CI = Rs.2929 \\
$
Hence, the compound interest on Rs.20,480 at $6\dfrac{1}{4}\% $ per annum for 2 years 73 days is Rs.2929.
Therefore, option (A) is correct.
Note: In this question, you may get confused in the step when we calculated the value of the amount A by putting $n = 2\dfrac{1}{5}years$ and then using it individually for 2 years and then $\dfrac{1}{5}years$. You can also solve this question by calculating the compound interest for 2 years and then simple interest for 73 days given by $\dfrac{{PRT}}{{100}}$ and then by adding them, we will get the value of total compound interest by adding them.
Complete step-by-step answer:
We are required to calculate the Compound Interest (CI) on Rs.20480 at rate of interest $6\dfrac{1}{4}\% $ per annum for a time period of 2 years 73 days.
We know that CI is given by $CI = A - P$ where A is the amount and P is the principal.
Here, P is Rs.20480 and amount A can be calculated by the formula: $A = P{\left( {1 + \dfrac{R}{{100}}} \right)^n}$, where R is the rate of interest and n is the time period.
Now, R = rate of interest = $6\dfrac{1}{4}\% $. We can write this equation, by using the formula: $x\dfrac{y}{z} = \dfrac{{(xz) + y}}{z}$as: $6\dfrac{1}{4}\% = \dfrac{{25}}{4}\% $
And, n = time period = 2 years 73 years. We can write the time period using the formula: $x{\text{ years y days = }}x \cdot \dfrac{y}{{365}}{\text{ years}}$ as $2{\text{ years 73 years = }}2\dfrac{{73}}{{365}} = 2\dfrac{1}{5}{\text{ years}}$
Substituting the values of P, R and n in the equation of A, we get
$ \Rightarrow A = P{\left( {1 + \dfrac{R}{{100}}} \right)^n} = 20480{\left( {1 + \dfrac{{25}}{{4\left( {100} \right)}}} \right)^2}\left( {1 + \dfrac{{\dfrac{{25}}{4} \cdot \dfrac{1}{5}}}{{100}}} \right)$ (since n is a fraction here so, we have first used for time period of 2 years and then for 73 days or $\dfrac{1}{5}{\text{ years}}$)
$
\Rightarrow A = 20480{\left( {1 + \dfrac{1}{{16}}} \right)^2}\left( {1 + \dfrac{1}{{80}}} \right) = 20480{\left( {\dfrac{{17}}{{16}}} \right)^2}\left( {\dfrac{{81}}{{80}}} \right) \\
\Rightarrow A = 20480\left( {\dfrac{{23409}}{{20480}}} \right) = Rs.23409 \\
$
Hence, the value of the amount is Rs.23409 and principal P is Rs.20480.
Therefore, the value of the compound interest: $CI = A - P$ will be:
$
\Rightarrow CI = Rs.23409 - Rs.20480 \\
\Rightarrow CI = Rs.2929 \\
$
Hence, the compound interest on Rs.20,480 at $6\dfrac{1}{4}\% $ per annum for 2 years 73 days is Rs.2929.
Therefore, option (A) is correct.
Note: In this question, you may get confused in the step when we calculated the value of the amount A by putting $n = 2\dfrac{1}{5}years$ and then using it individually for 2 years and then $\dfrac{1}{5}years$. You can also solve this question by calculating the compound interest for 2 years and then simple interest for 73 days given by $\dfrac{{PRT}}{{100}}$ and then by adding them, we will get the value of total compound interest by adding them.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE