
The composite mapping \[{\text{fog}}\]of the map, \[{\text{f}}:\mathbb{R} \to \mathbb{R}\], \[{\text{f(x) = sinx}}\]and \[{\text{g}}:\mathbb{R} \to \mathbb{R}\], \[{\text{g(x) = }}{{\text{x}}^{\text{2}}}\]is
A. \[{{\text{x}}^{\text{2}}}{\text{sinx}}\]
B. \[{{\text{(sinx)}}^{\text{2}}}\]
C. \[{\text{sin}}{{\text{x}}^{\text{2}}}\]
D. \[\dfrac{{{\text{sinx}}}}{{{{\text{x}}^{\text{2}}}}}\]
Answer
513.9k+ views
Hint: As, we are given, \[{\text{f}}:\mathbb{R} \to \mathbb{R}\], \[{\text{f(x) = sinx}}\]and \[{\text{g}}:\mathbb{R} \to \mathbb{R}\], \[{\text{g(x) = }}{{\text{x}}^{\text{2}}}\], we use \[{\text{fog}}\](x) \[{\text{ = f(g(x))}}\], to calculate the composite mapping \[{\text{fog}}\], it is usually defines as f(g).
It is not also usually equal to \[{\text{gof(x)}}\].
Complete step by step solution: We have, \[{\text{f}}:\mathbb{R} \to \mathbb{R}\], \[{\text{f(x) = sinx}}\]and \[{\text{g}}:\mathbb{R} \to \mathbb{R}\], \[{\text{g(x) = }}{{\text{x}}^{\text{2}}}\] ,
As we know, according to the definition,
\[{\text{fog}}\](x) \[{\text{ = f(g(x))}}\]
Now we have, \[{\text{g(x) = }}{{\text{x}}^{\text{2}}}\], so,
Going through the process,
\[{\text{fog}}\](x) \[{\text{ = f(g(x))}}\]
\[ \Rightarrow {\text{fog(x) = f(}}{{\text{x}}^{\text{2}}}{\text{)}}\]
As \[{\text{g}}:\mathbb{R} \to \mathbb{R}\] and \[{\text{g(x) = }}{{\text{x}}^{\text{2}}}\],
Now again, we have, \[{\text{f}}:\mathbb{R} \to \mathbb{R}\],\[{\text{f(x) = sinx}}\]
So, \[ \Rightarrow {\text{f(}}{{\text{x}}^{\text{2}}}{\text{) = sin(}}{{\text{x}}^{\text{2}}}{\text{)}}\].
At the end, we find that, \[{\text{fog(x) = f(g(x))}}\]\[{\text{ = sin}}{{\text{x}}^{\text{2}}}\].
Hence the correct option is (C).
Note: You need to remember that \[{\text{fog(x)}}\]is not always equal to \[{\text{gof(x)}}\].
In this example only, we can see that,
We have \[{\text{fog(x) = f(g(x))}}\]\[{\text{ = sin}}{{\text{x}}^{\text{2}}}\]
But if we try to calculate, \[{\text{gof(x)}}\] we will get,
\[{\text{gof(x)}}\]\[{\text{ = g(sinx)}}\]as \[{\text{f(x) = sinx}}\]and
\[{\text{g(sinx)}}\]\[{\text{ = (sinx}}{{\text{)}}^{\text{2}}}\]
Which is not equal to \[{\text{fog(x)}}\]
It is not also usually equal to \[{\text{gof(x)}}\].
Complete step by step solution: We have, \[{\text{f}}:\mathbb{R} \to \mathbb{R}\], \[{\text{f(x) = sinx}}\]and \[{\text{g}}:\mathbb{R} \to \mathbb{R}\], \[{\text{g(x) = }}{{\text{x}}^{\text{2}}}\] ,
As we know, according to the definition,
\[{\text{fog}}\](x) \[{\text{ = f(g(x))}}\]
Now we have, \[{\text{g(x) = }}{{\text{x}}^{\text{2}}}\], so,
Going through the process,
\[{\text{fog}}\](x) \[{\text{ = f(g(x))}}\]
\[ \Rightarrow {\text{fog(x) = f(}}{{\text{x}}^{\text{2}}}{\text{)}}\]
As \[{\text{g}}:\mathbb{R} \to \mathbb{R}\] and \[{\text{g(x) = }}{{\text{x}}^{\text{2}}}\],
Now again, we have, \[{\text{f}}:\mathbb{R} \to \mathbb{R}\],\[{\text{f(x) = sinx}}\]
So, \[ \Rightarrow {\text{f(}}{{\text{x}}^{\text{2}}}{\text{) = sin(}}{{\text{x}}^{\text{2}}}{\text{)}}\].
At the end, we find that, \[{\text{fog(x) = f(g(x))}}\]\[{\text{ = sin}}{{\text{x}}^{\text{2}}}\].
Hence the correct option is (C).
Note: You need to remember that \[{\text{fog(x)}}\]is not always equal to \[{\text{gof(x)}}\].
In this example only, we can see that,
We have \[{\text{fog(x) = f(g(x))}}\]\[{\text{ = sin}}{{\text{x}}^{\text{2}}}\]
But if we try to calculate, \[{\text{gof(x)}}\] we will get,
\[{\text{gof(x)}}\]\[{\text{ = g(sinx)}}\]as \[{\text{f(x) = sinx}}\]and
\[{\text{g(sinx)}}\]\[{\text{ = (sinx}}{{\text{)}}^{\text{2}}}\]
Which is not equal to \[{\text{fog(x)}}\]
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

What is the function of copulatory pads in the forelimbs class 11 biology CBSE
