
What will be the coefficients of ${a^8}{b^4}{c^9}{d^9}$ in ${\left( {abc + abd + acd + bcd} \right)^{10}}$?
Answer
614.7k+ views
Hint: In this question use the direct formula for any general term for equation in form of ${\left( {abc + abd + acd + bcd} \right)^n}$which is $\dfrac{{n!}}{{x!.y!.z!.q!}}{\left( {abc} \right)^x}{\left( {abd} \right)^y}{\left( {acd} \right)^z}{\left( {bcd} \right)^q} = \dfrac{{n!}}{{x!.y!.z!.q!}}{a^{\left( {x + y + z} \right)}}{b^{\left( {x + y + q} \right)}}{c^{\left( {x + z + q} \right)}}{d^{\left( {y + z + q} \right)}}$.The direct power and coefficients comparison will get to the answer.
Complete Step-by-Step solution:
As we know the general term of ${\left( {abc + abd + acd + bcd} \right)^{10}}$ is
$\dfrac{{10!}}{{x!.y!.z!.q!}}{\left( {abc} \right)^x}{\left( {abd} \right)^y}{\left( {acd} \right)^z}{\left( {bcd} \right)^q} = \dfrac{{10!}}{{x!.y!.z!.q!}}{a^{\left( {x + y + z} \right)}}{b^{\left( {x + y + q} \right)}}{c^{\left( {x + z + q} \right)}}{d^{\left( {y + z + q} \right)}}$
Now we need the coefficient of ${a^8}{b^4}{c^9}{d^9}$
So on comparing this with above equation we have,
$ \Rightarrow x + y + z = 8$................... (1)
$ \Rightarrow x + y + q = 4$................... (2)
$ \Rightarrow x + z + q = 9$................... (3)
$ \Rightarrow y + z + q = 9$.................. (4)
Now add all the four equation we have,
$ \Rightarrow 3x + 3y + 3z + 3q = 8 + 4 + 9 + 9 = 30$
Now divide by 3 we have,
$ \Rightarrow x + y + z + q = 10$ ............................. (5)
Now subtract equation (1), (2), (3) and (4) from equation (5) respectively we have,
$ \Rightarrow x + y + z + q - x - y - z = 10 - 8$
$ \Rightarrow q = 2$
And
$ \Rightarrow x + y + z + q - x - y - q = 10 - 4$
$ \Rightarrow z = 6$
And
$ \Rightarrow x + y + z + q - x - z - q = 10 - 9$
$ \Rightarrow y = 1$
And
$ \Rightarrow x + y + z + q - y - z - q = 10 - 9$
$ \Rightarrow x = 1$
Therefore the coefficient of ${a^8}{b^4}{c^9}{d^9}$ is
$ \Rightarrow \dfrac{{10!}}{{1!.1!.6!.2!}}{a^8}{b^4}{c^9}{d^9}$
Now simplify the above equation we have,
$ \Rightarrow \dfrac{{10 \times 9 \times 8 \times 7 \times 6!}}{{1 \times 1 \times 6! \times 2 \times 1}}{a^8}{b^4}{c^9}{d^9}$
$ \Rightarrow \dfrac{{10 \times 9 \times 8 \times 7}}{2}{a^8}{b^4}{c^9}{d^9}$
$ \Rightarrow 2520{a^8}{b^4}{c^9}{d^9}$
So the required coefficient of ${a^8}{b^4}{c^9}{d^9}$ in ${\left( {abc + abd + acd + bcd} \right)^{10}}$ is 2520.
So this is the required answer.
Note: Such types of questions are direct formula based and it is always advised to remember these direct formulas. It’s not a binomial expansion so we need not to be confused between these two concepts. Both are different to each other, any general term in the binomial expansion of ${\left( {x + y} \right)^n}$ is its ${\left( {n - r + 2} \right)^{th}}$ term.
Complete Step-by-Step solution:
As we know the general term of ${\left( {abc + abd + acd + bcd} \right)^{10}}$ is
$\dfrac{{10!}}{{x!.y!.z!.q!}}{\left( {abc} \right)^x}{\left( {abd} \right)^y}{\left( {acd} \right)^z}{\left( {bcd} \right)^q} = \dfrac{{10!}}{{x!.y!.z!.q!}}{a^{\left( {x + y + z} \right)}}{b^{\left( {x + y + q} \right)}}{c^{\left( {x + z + q} \right)}}{d^{\left( {y + z + q} \right)}}$
Now we need the coefficient of ${a^8}{b^4}{c^9}{d^9}$
So on comparing this with above equation we have,
$ \Rightarrow x + y + z = 8$................... (1)
$ \Rightarrow x + y + q = 4$................... (2)
$ \Rightarrow x + z + q = 9$................... (3)
$ \Rightarrow y + z + q = 9$.................. (4)
Now add all the four equation we have,
$ \Rightarrow 3x + 3y + 3z + 3q = 8 + 4 + 9 + 9 = 30$
Now divide by 3 we have,
$ \Rightarrow x + y + z + q = 10$ ............................. (5)
Now subtract equation (1), (2), (3) and (4) from equation (5) respectively we have,
$ \Rightarrow x + y + z + q - x - y - z = 10 - 8$
$ \Rightarrow q = 2$
And
$ \Rightarrow x + y + z + q - x - y - q = 10 - 4$
$ \Rightarrow z = 6$
And
$ \Rightarrow x + y + z + q - x - z - q = 10 - 9$
$ \Rightarrow y = 1$
And
$ \Rightarrow x + y + z + q - y - z - q = 10 - 9$
$ \Rightarrow x = 1$
Therefore the coefficient of ${a^8}{b^4}{c^9}{d^9}$ is
$ \Rightarrow \dfrac{{10!}}{{1!.1!.6!.2!}}{a^8}{b^4}{c^9}{d^9}$
Now simplify the above equation we have,
$ \Rightarrow \dfrac{{10 \times 9 \times 8 \times 7 \times 6!}}{{1 \times 1 \times 6! \times 2 \times 1}}{a^8}{b^4}{c^9}{d^9}$
$ \Rightarrow \dfrac{{10 \times 9 \times 8 \times 7}}{2}{a^8}{b^4}{c^9}{d^9}$
$ \Rightarrow 2520{a^8}{b^4}{c^9}{d^9}$
So the required coefficient of ${a^8}{b^4}{c^9}{d^9}$ in ${\left( {abc + abd + acd + bcd} \right)^{10}}$ is 2520.
So this is the required answer.
Note: Such types of questions are direct formula based and it is always advised to remember these direct formulas. It’s not a binomial expansion so we need not to be confused between these two concepts. Both are different to each other, any general term in the binomial expansion of ${\left( {x + y} \right)^n}$ is its ${\left( {n - r + 2} \right)^{th}}$ term.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

