
The coefficient of ${x^3}$ in the expansion of ${e^{2x + 3}}$ as a series in powers of x is
A. $\dfrac{{{e^3}}}{6}$
B. $\dfrac{{2{e^3}}}{6}$
C. $\dfrac{{4{e^3}}}{6}$
D. $\dfrac{{8{e^3}}}{6}$
Answer
576.3k+ views
Hint: At first we’ll write the expansion of any function using the Maclaurin’s series which is $f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}x + \dfrac{{f''(0)}}{{2!}}{x^2} + \dfrac{{f'''(0)}}{{3!}}{x^3} + ...... + \dfrac{{{f^n}(0)}}{{n!}}{x^n}$, in the series, we’ll find the coefficient of ${x^3}$. Then substituting the given function i.e. ${e^{2x + 3}}$ in place of f(x) we’ll find the coefficient of ${x^3}$in the expansion of ${e^{2x + 3}}$.
Complete step by step Answer:
We know that according to Maclaurin’s series expansion of any function is given by
$f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}x + \dfrac{{f''(0)}}{{2!}}{x^2} + \dfrac{{f'''(0)}}{{3!}}{x^3} + ...... + \dfrac{{{f^n}(0)}}{{n!}}{x^n}$
Now we have the function ${e^{2x + 3}}$
Let $f(x) = {e^{2x + 3}}$
Therefore, on differentiating with-respect-to x , we get,
$ \Rightarrow f'(x) = 2{e^{2x + 3}}$
Again on differentiating with-respect-to x, we get,
$ \Rightarrow f''(x) = 4{e^{2x + 3}}$
Again on differentiating with-respect-to x, we get,
$ \Rightarrow f'''(x) = 8{e^{2x + 3}}$
Now, according to the Maclaurin’s series expansion of any function, we can say that the coefficient of
${x^3}$is given by $\dfrac{{f'''(0)}}{{3!}}$
Therefore the coefficient of ${x^3}$ in the expansion of ${e^{2x + 3}} = \dfrac{{8{e^{2(0) + 3}}}}{{3!}}$
$ = \dfrac{{8{e^3}}}{6}$
Hence, The coefficient of ${x^3}$ in the expansion of ${e^{2x + 3}}$ as a series in powers of x is
$\dfrac{{8{e^3}}}{6}$
Therefore, option(D) is correct.
Note: An alternative way to find the answer can be given as follows:
We know that according to Maclaurin’s series expansion of any function is given by
$f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}x + \dfrac{{f''(0)}}{{2!}}{x^2} + \dfrac{{f'''(0)}}{{3!}}{x^3} + ...... + \dfrac{{{f^n}(0)}}{{n!}}{x^n}$
Now we have the function ${e^{2x + 3}}$
Let $f(x) = {e^{2x + 3}}$
Therefore, on differentiating with-respect-to x
$ \Rightarrow f'(x) = 2{e^{2x + 3}}$
Again on differentiating with-respect-to x
$ \Rightarrow f''(x) = {2^2}{e^{2x + 3}}$
Again on differentiating with-respect-to x
$ \Rightarrow f'''(x) = {2^3}{e^{2x + 3}}$
Therefore we can say that ${f^n}(x) = {2^n}{e^{2x + 3}}$
Substituting all these values in the Maclaurin’s series
$ \Rightarrow {e^{2x + 3}} = {e^{2(0) + 3}} + \dfrac{{2{e^{2(0) + 3}}}}{{1!}}x + \dfrac{{{2^2}{e^{2(0) + 3}}}}{{2!}}{x^2} + \dfrac{{{2^3}{e^{2(0) + 3}}}}{{3!}}{x^3} + ...... + \dfrac{{{2^n}{e^{2(0) + 3}}}}{{n!}}{x^n}$
$ \Rightarrow {e^{2x + 3}} = {e^3} + \dfrac{{2{e^3}}}{{1!}}x + \dfrac{{{2^2}{e^3}}}{{2!}}{x^2} + \dfrac{{{2^3}{e^3}}}{{3!}}{x^3} + ...... + \dfrac{{{2^n}{e^3}}}{{n!}}{x^n}$
Therefore from the expansion of${e^{2x + 3}} = \dfrac{{{2^3}{e^3}}}{{3!}}$
$ = \dfrac{{8{e^3}}}{6}$
Therefore, option(D) is correct
Complete step by step Answer:
We know that according to Maclaurin’s series expansion of any function is given by
$f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}x + \dfrac{{f''(0)}}{{2!}}{x^2} + \dfrac{{f'''(0)}}{{3!}}{x^3} + ...... + \dfrac{{{f^n}(0)}}{{n!}}{x^n}$
Now we have the function ${e^{2x + 3}}$
Let $f(x) = {e^{2x + 3}}$
Therefore, on differentiating with-respect-to x , we get,
$ \Rightarrow f'(x) = 2{e^{2x + 3}}$
Again on differentiating with-respect-to x, we get,
$ \Rightarrow f''(x) = 4{e^{2x + 3}}$
Again on differentiating with-respect-to x, we get,
$ \Rightarrow f'''(x) = 8{e^{2x + 3}}$
Now, according to the Maclaurin’s series expansion of any function, we can say that the coefficient of
${x^3}$is given by $\dfrac{{f'''(0)}}{{3!}}$
Therefore the coefficient of ${x^3}$ in the expansion of ${e^{2x + 3}} = \dfrac{{8{e^{2(0) + 3}}}}{{3!}}$
$ = \dfrac{{8{e^3}}}{6}$
Hence, The coefficient of ${x^3}$ in the expansion of ${e^{2x + 3}}$ as a series in powers of x is
$\dfrac{{8{e^3}}}{6}$
Therefore, option(D) is correct.
Note: An alternative way to find the answer can be given as follows:
We know that according to Maclaurin’s series expansion of any function is given by
$f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}x + \dfrac{{f''(0)}}{{2!}}{x^2} + \dfrac{{f'''(0)}}{{3!}}{x^3} + ...... + \dfrac{{{f^n}(0)}}{{n!}}{x^n}$
Now we have the function ${e^{2x + 3}}$
Let $f(x) = {e^{2x + 3}}$
Therefore, on differentiating with-respect-to x
$ \Rightarrow f'(x) = 2{e^{2x + 3}}$
Again on differentiating with-respect-to x
$ \Rightarrow f''(x) = {2^2}{e^{2x + 3}}$
Again on differentiating with-respect-to x
$ \Rightarrow f'''(x) = {2^3}{e^{2x + 3}}$
Therefore we can say that ${f^n}(x) = {2^n}{e^{2x + 3}}$
Substituting all these values in the Maclaurin’s series
$ \Rightarrow {e^{2x + 3}} = {e^{2(0) + 3}} + \dfrac{{2{e^{2(0) + 3}}}}{{1!}}x + \dfrac{{{2^2}{e^{2(0) + 3}}}}{{2!}}{x^2} + \dfrac{{{2^3}{e^{2(0) + 3}}}}{{3!}}{x^3} + ...... + \dfrac{{{2^n}{e^{2(0) + 3}}}}{{n!}}{x^n}$
$ \Rightarrow {e^{2x + 3}} = {e^3} + \dfrac{{2{e^3}}}{{1!}}x + \dfrac{{{2^2}{e^3}}}{{2!}}{x^2} + \dfrac{{{2^3}{e^3}}}{{3!}}{x^3} + ...... + \dfrac{{{2^n}{e^3}}}{{n!}}{x^n}$
Therefore from the expansion of${e^{2x + 3}} = \dfrac{{{2^3}{e^3}}}{{3!}}$
$ = \dfrac{{8{e^3}}}{6}$
Therefore, option(D) is correct
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

