
The center of the conic section $14{{x}^{2}}-4xy+11{{y}^{2}}-44x-58y+71=0$ is:
(a). $\left( 2,3 \right)$
(b). $\left( 2,-3 \right)$
(c). $\left( -2,3 \right)$
(d). $\left( -2,-3 \right)$
Answer
601.8k+ views
Hint: Compare the given equation with the general form of a conic section:
$a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$
Find the values of the coefficients. Then solve the following equations to find out the center:
$\begin{align}
& a{{x}_{1}}+h{{y}_{1}}+g=0 \\
& h{{x}_{1}}+b{{y}_{1}}+f=0 \\
\end{align}$
Complete step-by-step answer:
If a point moves in a plane in such a way that its distance from a fixed point always bears a constant ratio to its distance from a fixed straight line, then the locus of the moving point is called a conic section or simply a conic.
We know that the general form of a conic section is:
$a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0.....(1)$
Let the center of the conic be at $\left( {{x}_{1}},{{y}_{1}} \right)$.
Then the center of the conic will satisfy the following equations:
$\begin{align}
& a{{x}_{1}}+h{{y}_{1}}+g=0 \\
& h{{x}_{1}}+b{{y}_{1}}+f=0 \\
\end{align}$
We can find out the center of the conic by solving these two equations.
Now the given equation is:
$14{{x}^{2}}-4xy+11{{y}^{2}}-44x-58y+71=0.....(2)$
Now if we compare the coefficients of the variables from (1) and (2) we will get,
$a=14$
$b=11$
$2h=-4\Rightarrow h=-2$
$2g=-44\Rightarrow g=-22$
$2f=-58\Rightarrow f=-29$
$c=71$
Let the center of the conic be at $\left( {{x}_{1}},{{y}_{1}} \right)$.
The center will satisfy the following equations:
$\begin{align}
& a{{x}_{1}}+h{{y}_{1}}+g=0 \\
& h{{x}_{1}}+b{{y}_{1}}+f=0 \\
\end{align}$
Let us put the values of the coefficients,
$\begin{align}
& 14{{x}_{1}}-2{{y}_{1}}-22=0.......(3) \\
& -2{{x}_{1}}+11{{y}_{1}}-29=0.......(4) \\
\end{align}$
We will solve these to equations by cancelling out ${{x}_{1}}$ from (1) and (2)
To cancel out ${{x}_{1}}$ we have to make the coefficients the same.
Let us multiply equation (4) by 7, we will get:
$-14{{x}_{1}}+77{{y}_{1}}-203=0......(5)$
Now by adding equation (3) and (4), we will get:
$14{{x}_{1}}-2{{y}_{1}}-22-14{{x}_{1}}+77{{y}_{1}}-203=0$
By cancelling out the same terms we will get:
$\begin{align}
& \Rightarrow -2{{y}_{1}}-22+77{{y}_{1}}-203=0 \\
& \Rightarrow 75{{y}_{1}}-225=0 \\
& \Rightarrow 75{{y}_{1}}=225 \\
& \Rightarrow {{y}_{1}}=3 \\
\end{align}$
Now let us put the value of ${{y}_{1}}$ in (3) to find out the value of ${{x}_{1}}$:
$\begin{align}
& 14{{x}_{1}}-\left( 2\times 3 \right)-22=0 \\
& \Rightarrow 14{{x}_{1}}-6-22=0 \\
& \Rightarrow 14{{x}_{1}}-28=0 \\
& \Rightarrow 14{{x}_{1}}=28 \\
& \Rightarrow {{x}_{1}}=2 \\
\end{align}$
Therefore, ${{x}_{1}}=2,{{y}_{1}}=3$
Hence the center of the given conic is $\left( 2,3 \right)$.
Therefore option (a) is correct.
Note: We can also find out center of a conic by the following formula:
${{x}_{1}}=\dfrac{hf-bg}{ab-{{h}^{2}}},{{y}_{1}}=\dfrac{gh-af}{ab-{{h}^{2}}}$
$a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$
Find the values of the coefficients. Then solve the following equations to find out the center:
$\begin{align}
& a{{x}_{1}}+h{{y}_{1}}+g=0 \\
& h{{x}_{1}}+b{{y}_{1}}+f=0 \\
\end{align}$
Complete step-by-step answer:
If a point moves in a plane in such a way that its distance from a fixed point always bears a constant ratio to its distance from a fixed straight line, then the locus of the moving point is called a conic section or simply a conic.
We know that the general form of a conic section is:
$a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0.....(1)$
Let the center of the conic be at $\left( {{x}_{1}},{{y}_{1}} \right)$.
Then the center of the conic will satisfy the following equations:
$\begin{align}
& a{{x}_{1}}+h{{y}_{1}}+g=0 \\
& h{{x}_{1}}+b{{y}_{1}}+f=0 \\
\end{align}$
We can find out the center of the conic by solving these two equations.
Now the given equation is:
$14{{x}^{2}}-4xy+11{{y}^{2}}-44x-58y+71=0.....(2)$
Now if we compare the coefficients of the variables from (1) and (2) we will get,
$a=14$
$b=11$
$2h=-4\Rightarrow h=-2$
$2g=-44\Rightarrow g=-22$
$2f=-58\Rightarrow f=-29$
$c=71$
Let the center of the conic be at $\left( {{x}_{1}},{{y}_{1}} \right)$.
The center will satisfy the following equations:
$\begin{align}
& a{{x}_{1}}+h{{y}_{1}}+g=0 \\
& h{{x}_{1}}+b{{y}_{1}}+f=0 \\
\end{align}$
Let us put the values of the coefficients,
$\begin{align}
& 14{{x}_{1}}-2{{y}_{1}}-22=0.......(3) \\
& -2{{x}_{1}}+11{{y}_{1}}-29=0.......(4) \\
\end{align}$
We will solve these to equations by cancelling out ${{x}_{1}}$ from (1) and (2)
To cancel out ${{x}_{1}}$ we have to make the coefficients the same.
Let us multiply equation (4) by 7, we will get:
$-14{{x}_{1}}+77{{y}_{1}}-203=0......(5)$
Now by adding equation (3) and (4), we will get:
$14{{x}_{1}}-2{{y}_{1}}-22-14{{x}_{1}}+77{{y}_{1}}-203=0$
By cancelling out the same terms we will get:
$\begin{align}
& \Rightarrow -2{{y}_{1}}-22+77{{y}_{1}}-203=0 \\
& \Rightarrow 75{{y}_{1}}-225=0 \\
& \Rightarrow 75{{y}_{1}}=225 \\
& \Rightarrow {{y}_{1}}=3 \\
\end{align}$
Now let us put the value of ${{y}_{1}}$ in (3) to find out the value of ${{x}_{1}}$:
$\begin{align}
& 14{{x}_{1}}-\left( 2\times 3 \right)-22=0 \\
& \Rightarrow 14{{x}_{1}}-6-22=0 \\
& \Rightarrow 14{{x}_{1}}-28=0 \\
& \Rightarrow 14{{x}_{1}}=28 \\
& \Rightarrow {{x}_{1}}=2 \\
\end{align}$
Therefore, ${{x}_{1}}=2,{{y}_{1}}=3$
Hence the center of the given conic is $\left( 2,3 \right)$.
Therefore option (a) is correct.
Note: We can also find out center of a conic by the following formula:
${{x}_{1}}=\dfrac{hf-bg}{ab-{{h}^{2}}},{{y}_{1}}=\dfrac{gh-af}{ab-{{h}^{2}}}$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

