
The boat goes 30 km upstream and 44 km downstream in 10 hours. In 13 hours, it can go 40 km upstream and 55 km downstream. Determine the speed of stream and that of the boating till water.
Answer
428k+ views
Hint – Here we will proceed by using the formulas Downstream speed :$a = u + v$ , upstream speed: $b = u - v$. Then the speed of boat in still water $u = \dfrac{1}{2}\left( {a + b} \right)$, the speed of the boat in still water: $v = \dfrac{1}{2}\left( {a - b} \right)$.
Complete step-by-step solution -
Let the speed of the boat in still water = $x$ km per hour.
And, the speed of stream $ = y$ km per hour.
Speed of boat at downstream
$ \Rightarrow \left( {x + y} \right)$ km per hour.
Speed of boat at upstream
$ \Rightarrow \left( {x - y} \right)$ km per hour.
$\because $ $time = \dfrac{{dis\tan ce}}{{speed}}$
Time taken to cover 30 km upstream $ \Rightarrow \dfrac{{30}}{{x - y}}$
Time taken to cover 44 km downstream $ \Rightarrow \dfrac{{44}}{{x + y}}$
According to the first condition,
$ \Rightarrow \dfrac{{30}}{{x - y}} + \dfrac{{44}}{{x + y}} = 10$
Time taken to cover 40 km upstream $ \Rightarrow \dfrac{{40}}{{x - y}}$
Time taken to cover 55 km downstream $ \Rightarrow \dfrac{{55}}{{x + y}}$
According to the second condition,
$ \Rightarrow \dfrac{{40}}{{x - y}} + \dfrac{{55}}{{x + y}} = 13$
Let $\dfrac{1}{{x - y}} = u$ and $\dfrac{1}{{x + y}} = v$
$ \Rightarrow 30u + 44v = 10$ …. (1)
$ \Rightarrow 40u + 55v = 13$ …. (2)
Multiply (1) by 5 and (2) by 4 and subtract both
$ \Rightarrow \left( {150u + 220v = 50} \right) - \left( {160u + 220v = 52} \right)$
$
\Rightarrow - 10u = - 2 \\
\Rightarrow u = \dfrac{1}{5} \\
$
Put $u = \dfrac{1}{5}$ in equation (1)
$
\Rightarrow 30 \times \dfrac{1}{5} + 44v = 10 \\
\Rightarrow 44v = 4 \\
\Rightarrow v = \dfrac{1}{11} \\
$
$ \Rightarrow u = \dfrac{1}{{x - y}} = \dfrac{1}{5}$
$ \Rightarrow x - y = 5$ …. (3)
$ \Rightarrow v = \dfrac{1}{{x + y}} = \dfrac{1}{{11}}$
$ \Rightarrow x + y = 11$ …. (4)
Adding equation (3) and equation (4), we get
$ \Rightarrow x - y = 5$ + ($x + y = 11$)
$ \Rightarrow x = 8$
Put $x = 8$ in (3)
$
x - y = 5 \\
\Rightarrow 8 - 5 = y \\
\Rightarrow 3 = y \\
$
Hence, the speed of the boat in still water = 8 km per hour and the speed of stream = 3 km per hour.
Note – Whenever we come up with this type of problem, one must know that when an object moves downstream in a river, the river current supports the object’s movement and hence the net speed of the object is the sum of its speed in still water and the speed of the river current. On the other hand, the current acts against the object’s movement if the object is travelling upstream, hence the net speed of the object is still water subtracted by the speed of the river current.
Complete step-by-step solution -
Let the speed of the boat in still water = $x$ km per hour.
And, the speed of stream $ = y$ km per hour.
Speed of boat at downstream
$ \Rightarrow \left( {x + y} \right)$ km per hour.
Speed of boat at upstream
$ \Rightarrow \left( {x - y} \right)$ km per hour.
$\because $ $time = \dfrac{{dis\tan ce}}{{speed}}$
Time taken to cover 30 km upstream $ \Rightarrow \dfrac{{30}}{{x - y}}$
Time taken to cover 44 km downstream $ \Rightarrow \dfrac{{44}}{{x + y}}$
According to the first condition,
$ \Rightarrow \dfrac{{30}}{{x - y}} + \dfrac{{44}}{{x + y}} = 10$
Time taken to cover 40 km upstream $ \Rightarrow \dfrac{{40}}{{x - y}}$
Time taken to cover 55 km downstream $ \Rightarrow \dfrac{{55}}{{x + y}}$
According to the second condition,
$ \Rightarrow \dfrac{{40}}{{x - y}} + \dfrac{{55}}{{x + y}} = 13$
Let $\dfrac{1}{{x - y}} = u$ and $\dfrac{1}{{x + y}} = v$
$ \Rightarrow 30u + 44v = 10$ …. (1)
$ \Rightarrow 40u + 55v = 13$ …. (2)
Multiply (1) by 5 and (2) by 4 and subtract both
$ \Rightarrow \left( {150u + 220v = 50} \right) - \left( {160u + 220v = 52} \right)$
$
\Rightarrow - 10u = - 2 \\
\Rightarrow u = \dfrac{1}{5} \\
$
Put $u = \dfrac{1}{5}$ in equation (1)
$
\Rightarrow 30 \times \dfrac{1}{5} + 44v = 10 \\
\Rightarrow 44v = 4 \\
\Rightarrow v = \dfrac{1}{11} \\
$
$ \Rightarrow u = \dfrac{1}{{x - y}} = \dfrac{1}{5}$
$ \Rightarrow x - y = 5$ …. (3)
$ \Rightarrow v = \dfrac{1}{{x + y}} = \dfrac{1}{{11}}$
$ \Rightarrow x + y = 11$ …. (4)
Adding equation (3) and equation (4), we get
$ \Rightarrow x - y = 5$ + ($x + y = 11$)
$ \Rightarrow x = 8$
Put $x = 8$ in (3)
$
x - y = 5 \\
\Rightarrow 8 - 5 = y \\
\Rightarrow 3 = y \\
$
Hence, the speed of the boat in still water = 8 km per hour and the speed of stream = 3 km per hour.
Note – Whenever we come up with this type of problem, one must know that when an object moves downstream in a river, the river current supports the object’s movement and hence the net speed of the object is the sum of its speed in still water and the speed of the river current. On the other hand, the current acts against the object’s movement if the object is travelling upstream, hence the net speed of the object is still water subtracted by the speed of the river current.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

How did Douglas overcome his fear of water class 7 english CBSE

What is the square root of 04 class 7 maths CBSE

Fill in the blanks with appropriate modals a Drivers class 7 english CBSE

The southernmost point of the Indian mainland is known class 7 social studies CBSE

What crosssections do you get when you give a Vertical class 7 maths CBSE
