
The base QR of an equilateral triangle PQR lies on the x-axis. The coordinates of the point Q are \[\left( -4,0 \right)\] and the origin is the midpoint of the base. Find the coordinates of the points P and R.
Answer
508.8k+ views
Hint: Assume that the coordinates of the point R is \[\left( x,0 \right)\] . The coordinate of the point Q, and the midpoint of the base QR is origin \[\left( 0,0 \right)\] . Now, use the midpoint formula, \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\] and get the value of x. Now, assume that the coordinates of the point P is \[\left( a,b \right)\] . Now, using the distance formula, \[\text{Distance}=\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}\] , calculate the distance PQ, PR, and QR. Since, \[\Delta PQR\] is an equilateral triangle, so \[PQ=PR=QR\] . Now, use the relation \[PQ=PR\] and get the value of a. Then, use the relation \[PR=QR\] and get the value of b. Now, conclude the coordinates of the point P and R.
Complete step-by-step solution:
According to the question, it is given the base of the equilateral triangle PQR is lying on the x-axis.
The coordinates of the point Q = \[\left( -4,0 \right)\] ……………………………….(1)
The coordinates of the midpoint of the base QR = \[\left( 0,0 \right)\] …………………………………….(2)
Since Q and R both points are lying on the x-axis so, the y coordinate of both points should be equal to zero.
Let us assume that the coordinate of the point R is \[\left( x,0 \right)\] …………………………………….(3)
We know the midpoint formula, the coordinates of the midpoint is \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\] joining the points having coordinates \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] ……………………………………..(4)
The point R is the midpoint of the base QR.
Now, from equation (1), equation (2), equation (3), and equation (4), we get
\[0=\dfrac{-4+x}{2}\] ………………………………(5)
\[0=\dfrac{0+0}{2}\] ………………………………….(6)
Now, solving equation (5), we get
\[\begin{align}
& \Rightarrow 0=\dfrac{-4+x}{2} \\
& \Rightarrow 0=-4+x \\
& \Rightarrow 4=x \\
\end{align}\]
The coordinates of the point R is \[\left( 4,0 \right)\] ……………………………………(7)
Let us assume that the coordinate of the point P is \[\left( a,b \right)\] …………………………………….(8)
We know the distance formula, \[\text{Distance}=\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}\] ……………………………………..(9)
Now, using the distance formula shown in equation (9) to find the length of the side PQ, PR, and QR.
The coordinates of the point P = \[\left( a,b \right)\]
The coordinates of the point Q = \[\left( -4,0 \right)\]
The coordinates of the point R = \[\left( 4,0 \right)\]
\[PQ=\sqrt{{{\left( a-\left( -4 \right) \right)}^{2}}+{{\left( b-0 \right)}^{2}}}=\sqrt{{{\left( a+4 \right)}^{2}}+{{b}^{2}}}\] ……………………………………….(10)
Similarly, \[PR=\sqrt{{{\left( a-\left( 4 \right) \right)}^{2}}+{{\left( b-0 \right)}^{2}}}=\sqrt{{{\left( a-4 \right)}^{2}}+{{b}^{2}}}\] ………………………………………(11)
Similarly, \[QR=\sqrt{{{\left( -4-4 \right)}^{2}}+{{\left( 0-0 \right)}^{2}}}=8\] ………………………………………(12)
Since, \[\Delta PQR\] is an equilateral triangle, so \[PQ=PR=QR\] ………………………………..(13)
Now, from equation (10), equation (11), and equation (13), we get
\[\begin{align}
& \Rightarrow PQ=PR \\
& \Rightarrow \sqrt{{{\left( a+4 \right)}^{2}}+{{b}^{2}}}=\sqrt{{{\left( a-4 \right)}^{2}}+{{b}^{2}}} \\
& \Rightarrow {{\left( a+4 \right)}^{2}}+{{b}^{2}}={{\left( a-4 \right)}^{2}}+{{b}^{2}} \\
& \Rightarrow {{a}^{2}}+8a+16={{a}^{2}}-8a+16 \\
& \Rightarrow 16a=0 \\
& \Rightarrow a=0 \\
\end{align}\]
Now, the coordinates of the point P is \[\left( 0,b \right)\] …………………………………(14)
From equation (11), equation (12), and equation (13), we get
\[\begin{align}
& \Rightarrow PR=QR \\
& \Rightarrow \sqrt{{{\left( a-4 \right)}^{2}}+{{b}^{2}}}=8 \\
& \Rightarrow {{\left( a-4 \right)}^{2}}+{{b}^{2}}=64 \\
& \Rightarrow {{\left( 0-4 \right)}^{2}}+{{b}^{2}}=64 \\
& \Rightarrow {{b}^{2}}+16=64 \\
& \Rightarrow {{b}^{2}}=64-16 \\
& \Rightarrow {{b}^{2}}=48 \\
& \Rightarrow b=\sqrt{48} \\
& \Rightarrow b=\pm 4\sqrt{3} \\
\end{align}\]
So, the coordinates of the point P is \[\left( 0,4\sqrt{3} \right)\] or \[\left( 0,-4\sqrt{3} \right)\] ………………………………….(15)
Now, from equation (7) and equation (15), we have the coordinates of the point P and point R.
Therefore, the coordinates of the point P is \[\left( 0,4\sqrt{3} \right)\] or \[\left( 0,-4\sqrt{3} \right)\] and R is \[\left( 4,0 \right)\].
Note: In this question, one might get confused because after solving the relation \[PQ=PR\], we only get the value of a and we don’t get the value of b. So, don’t confuse here as we have two variables and two equations. Use the relation \[PR=QR\] and get the values of b. the value of b can be negative or positive, so there is no need to reject anyone.
Complete step-by-step solution:
According to the question, it is given the base of the equilateral triangle PQR is lying on the x-axis.
The coordinates of the point Q = \[\left( -4,0 \right)\] ……………………………….(1)
The coordinates of the midpoint of the base QR = \[\left( 0,0 \right)\] …………………………………….(2)
Since Q and R both points are lying on the x-axis so, the y coordinate of both points should be equal to zero.
Let us assume that the coordinate of the point R is \[\left( x,0 \right)\] …………………………………….(3)
We know the midpoint formula, the coordinates of the midpoint is \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\] joining the points having coordinates \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] ……………………………………..(4)
The point R is the midpoint of the base QR.
Now, from equation (1), equation (2), equation (3), and equation (4), we get
\[0=\dfrac{-4+x}{2}\] ………………………………(5)
\[0=\dfrac{0+0}{2}\] ………………………………….(6)
Now, solving equation (5), we get
\[\begin{align}
& \Rightarrow 0=\dfrac{-4+x}{2} \\
& \Rightarrow 0=-4+x \\
& \Rightarrow 4=x \\
\end{align}\]
The coordinates of the point R is \[\left( 4,0 \right)\] ……………………………………(7)
Let us assume that the coordinate of the point P is \[\left( a,b \right)\] …………………………………….(8)

We know the distance formula, \[\text{Distance}=\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}\] ……………………………………..(9)
Now, using the distance formula shown in equation (9) to find the length of the side PQ, PR, and QR.
The coordinates of the point P = \[\left( a,b \right)\]
The coordinates of the point Q = \[\left( -4,0 \right)\]
The coordinates of the point R = \[\left( 4,0 \right)\]
\[PQ=\sqrt{{{\left( a-\left( -4 \right) \right)}^{2}}+{{\left( b-0 \right)}^{2}}}=\sqrt{{{\left( a+4 \right)}^{2}}+{{b}^{2}}}\] ……………………………………….(10)
Similarly, \[PR=\sqrt{{{\left( a-\left( 4 \right) \right)}^{2}}+{{\left( b-0 \right)}^{2}}}=\sqrt{{{\left( a-4 \right)}^{2}}+{{b}^{2}}}\] ………………………………………(11)
Similarly, \[QR=\sqrt{{{\left( -4-4 \right)}^{2}}+{{\left( 0-0 \right)}^{2}}}=8\] ………………………………………(12)
Since, \[\Delta PQR\] is an equilateral triangle, so \[PQ=PR=QR\] ………………………………..(13)
Now, from equation (10), equation (11), and equation (13), we get
\[\begin{align}
& \Rightarrow PQ=PR \\
& \Rightarrow \sqrt{{{\left( a+4 \right)}^{2}}+{{b}^{2}}}=\sqrt{{{\left( a-4 \right)}^{2}}+{{b}^{2}}} \\
& \Rightarrow {{\left( a+4 \right)}^{2}}+{{b}^{2}}={{\left( a-4 \right)}^{2}}+{{b}^{2}} \\
& \Rightarrow {{a}^{2}}+8a+16={{a}^{2}}-8a+16 \\
& \Rightarrow 16a=0 \\
& \Rightarrow a=0 \\
\end{align}\]
Now, the coordinates of the point P is \[\left( 0,b \right)\] …………………………………(14)
From equation (11), equation (12), and equation (13), we get
\[\begin{align}
& \Rightarrow PR=QR \\
& \Rightarrow \sqrt{{{\left( a-4 \right)}^{2}}+{{b}^{2}}}=8 \\
& \Rightarrow {{\left( a-4 \right)}^{2}}+{{b}^{2}}=64 \\
& \Rightarrow {{\left( 0-4 \right)}^{2}}+{{b}^{2}}=64 \\
& \Rightarrow {{b}^{2}}+16=64 \\
& \Rightarrow {{b}^{2}}=64-16 \\
& \Rightarrow {{b}^{2}}=48 \\
& \Rightarrow b=\sqrt{48} \\
& \Rightarrow b=\pm 4\sqrt{3} \\
\end{align}\]
So, the coordinates of the point P is \[\left( 0,4\sqrt{3} \right)\] or \[\left( 0,-4\sqrt{3} \right)\] ………………………………….(15)
Now, from equation (7) and equation (15), we have the coordinates of the point P and point R.
Therefore, the coordinates of the point P is \[\left( 0,4\sqrt{3} \right)\] or \[\left( 0,-4\sqrt{3} \right)\] and R is \[\left( 4,0 \right)\].
Note: In this question, one might get confused because after solving the relation \[PQ=PR\], we only get the value of a and we don’t get the value of b. So, don’t confuse here as we have two variables and two equations. Use the relation \[PR=QR\] and get the values of b. the value of b can be negative or positive, so there is no need to reject anyone.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
