The area under the force-displacement curve represents.
A. velocity
B. Acceleration
C. Impulse
D. work is done
Answer
Verified
469.5k+ views
Hint: We know that integrating a curve in an x-y plane within the prescribed limits of x can give us the area under that curve. An integration can sum up the small area elements over the given limits to provide the final resultant area.
Complete step by step answer:
The force acting on the system is constant, for example, when a force of gravity and friction moves with the constant speed, therefore the force-displacement graph is just a horizontal line because force can’t change.
In this case, the area under the graph is triangular, with base length (S) that is displacement height (H). So, the area of the triangle is 0.5×base×height.
Now here in the above figure, the area under the line that is blue represents the work done by force.
Since we can say that force is a function of x, let’s say F(x) then the work is given by,
Here W is the work done, and dx is the differential distance, and when we integrate the sum of F(x)dx continually with integration, then we will get the required work done. Here 0 to x is the range of displacement within which the work is calculated.
From this formula, we calculate the mechanical work done by a constant force.
We can also use this method to calculate the work done when an object accelerates from rest to final speed (v), using a constant force F. For a constant acceleration from rest, the distance travelled can be written in terms of the average rate (Vav)
$\therefore {\rm{S = }}{{\rm{V}}_{{\rm{av}}}} \times {\rm{t = }}\dfrac{{{\rm{Vt}}}}{2}$
And the acceleration (a) becomes,
${\rm{a = }}\dfrac{{\rm{v}}}{{\rm{t}}}$ (Here v is velocity and t is time.)
So, the work is done, ${\rm{W = F}}{\rm{.S}}$
$ \Rightarrow {\rm{W = m}} \times {\rm{a}} \times {\rm{S = m}} \times \dfrac{{\rm{v}}}{{\rm{t}}} \times \dfrac{{{\rm{vt}}}}{2} = \dfrac{1}{2}{\rm{m}}{{\rm{v}}^2}$
So the work is done, when objects accelerate to a constant speed from rest is equal to the energy stored as kinetic energy by the conservation of energy.
Note: When we talk about the graph of force-displacement, it means the force is a function of some displacement. Therefore the nature of the graph and its slope will depend upon the nature of the function. No work is done along the direction of the motion if the force is perpendicular.
Complete step by step answer:
The force acting on the system is constant, for example, when a force of gravity and friction moves with the constant speed, therefore the force-displacement graph is just a horizontal line because force can’t change.
In this case, the area under the graph is triangular, with base length (S) that is displacement height (H). So, the area of the triangle is 0.5×base×height.
Now here in the above figure, the area under the line that is blue represents the work done by force.
Since we can say that force is a function of x, let’s say F(x) then the work is given by,
Here W is the work done, and dx is the differential distance, and when we integrate the sum of F(x)dx continually with integration, then we will get the required work done. Here 0 to x is the range of displacement within which the work is calculated.
From this formula, we calculate the mechanical work done by a constant force.
We can also use this method to calculate the work done when an object accelerates from rest to final speed (v), using a constant force F. For a constant acceleration from rest, the distance travelled can be written in terms of the average rate (Vav)
$\therefore {\rm{S = }}{{\rm{V}}_{{\rm{av}}}} \times {\rm{t = }}\dfrac{{{\rm{Vt}}}}{2}$
And the acceleration (a) becomes,
${\rm{a = }}\dfrac{{\rm{v}}}{{\rm{t}}}$ (Here v is velocity and t is time.)
So, the work is done, ${\rm{W = F}}{\rm{.S}}$
$ \Rightarrow {\rm{W = m}} \times {\rm{a}} \times {\rm{S = m}} \times \dfrac{{\rm{v}}}{{\rm{t}}} \times \dfrac{{{\rm{vt}}}}{2} = \dfrac{1}{2}{\rm{m}}{{\rm{v}}^2}$
So the work is done, when objects accelerate to a constant speed from rest is equal to the energy stored as kinetic energy by the conservation of energy.
Note: When we talk about the graph of force-displacement, it means the force is a function of some displacement. Therefore the nature of the graph and its slope will depend upon the nature of the function. No work is done along the direction of the motion if the force is perpendicular.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
State the laws of reflection of light