
The area enclosed by the curves $x=a{{\cos }^{3}}t,\text{ }y=b{{\sin }^{3}}t$ is
A. $\dfrac{\pi ab}{4}$
B. $\dfrac{3\pi ab}{4}$
C. $\dfrac{3\pi ab}{8}$
D. None of these
Answer
572.4k+ views
Hint: We know that the area bounded by a curve is given by the formula
\[Area=\dfrac{1}{2}\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( x\dfrac{dy}{dt}-y\dfrac{dx}{dt} \right)dt}\]
Now, consider $x=a{{\cos }^{3}}t$ and $y=b{{\sin }^{3}}t$ separately and differentiate both equations with respect to $t$. Then, put the values in the formula and integrate using the formula $\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{m}}t}.{{\cos }^{n}}t=\dfrac{\left( m-1 \right)\left( m-3 \right)...1\cdot \left( n-1 \right)\left( n-3 \right)...1}{\left( m+n \right)\left( m+n-2 \right)...1}\times \dfrac{\pi }{2}$ with even $m,n$ to obtain the desired result.
Complete step-by-step answer:
We have given equations $x=a{{\cos }^{3}}t$ and $y=b{{\sin }^{3}}t$
Now, first we will find $\dfrac{dy}{dt}$ and $\dfrac{dx}{dt}$.
$x=a{{\cos }^{3}}t$
Now, differentiate the equation with respect to $t$, we get
$\Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( a{{\cos }^{3}}t \right)$
Taking out the constant term, we get
\[\Rightarrow \dfrac{dx}{dt}=a\dfrac{d}{dt}\left( {{\cos }^{3}}t \right)\]
\[\Rightarrow \dfrac{dx}{dt}=a3{{\cos }^{2}}t\dfrac{d}{dt}\left( \cos t \right)\]
Now, we know that derivative of $\cos t=-\sin t$
So, when we solve further, we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}=a3{{\cos }^{2}}t\left( -\sin t \right) \\
& \Rightarrow \dfrac{dx}{dt}=-3a{{\cos }^{2}}t\sin t \\
\end{align}\]
Now, we will solve the equation $y=b{{\sin }^{3}}t$
Differentiating the equation with respect to $t$, we get
$\Rightarrow \dfrac{dy}{dt}=\dfrac{d}{dt}\left( b{{\sin }^{3}}t \right)$
Taking out the constant term, we get
$\begin{align}
& \Rightarrow \dfrac{dy}{dt}=b\dfrac{d}{dt}\left( {{\sin }^{3}}t \right) \\
& \Rightarrow \dfrac{dy}{dt}=b3{{\sin }^{2}}t\dfrac{d}{dt}\left( \sin t \right) \\
\end{align}$
Now, we know that derivative of $\sin t=\cos t$
So, when we solve further, we get
$\begin{align}
& \Rightarrow \dfrac{dy}{dt}=b3{{\sin }^{2}}t\left( \cos t \right) \\
& \Rightarrow \dfrac{dy}{dt}=3b{{\sin }^{2}}t\cos t \\
\end{align}$
Now, we will find the value of \[x\dfrac{dy}{dt}-y\dfrac{dx}{dt}\]
\[\begin{align}
& \Rightarrow x\dfrac{dy}{dt}-y\dfrac{dx}{dt}=a{{\cos }^{3}}t\left( 3b{{\sin }^{2}}t\cos t \right)-b{{\sin }^{3}}t\left( -3a{{\cos }^{2}}t\sin t \right) \\
& \Rightarrow x\dfrac{dy}{dt}-y\dfrac{dx}{dt}=3ab{{\cos }^{4}}t{{\sin }^{2}}t+3ab{{\cos }^{2}}t{{\sin }^{4}}t \\
\end{align}\]
Now, taking common terms out we get
\[\Rightarrow x\dfrac{dy}{dt}-y\dfrac{dx}{dt}=3ab{{\cos }^{2}}t{{\sin }^{2}}t\left( {{\cos }^{2}}t+{{\sin }^{2}}t \right)\]
We know that \[{{\cos }^{2}}x+{{\sin }^{2}}x=1\]
So, we get
\[\Rightarrow x\dfrac{dy}{dt}-y\dfrac{dx}{dt}=3ab{{\cos }^{2}}t{{\sin }^{2}}t\]
Now, the required area will be
\[Area=\dfrac{1}{2}\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( x\dfrac{dy}{dt}-y\dfrac{dx}{dt} \right)dt}\]
Put the values in the formula, we get
\[Area=\dfrac{1}{2}\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( 3ab{{\cos }^{2}}t{{\sin }^{2}}t \right)dt}\]
Now, to obtain a closed curve the value of $t$ varies from $0$ to $2\pi $
\[Area=\dfrac{1}{2}\int\limits_{0}^{2\pi }{\left( 3ab{{\cos }^{2}}t{{\sin }^{2}}t \right)dt}\]
Taking out the constant term, we get
\[Area=\dfrac{3ab}{2}\int\limits_{0}^{2\pi }{\left( {{\cos }^{2}}t{{\sin }^{2}}t \right)dt}\]
We can split the limits of integral into 4 equal parts with limits \[\left[ 0,\dfrac{\pi }{2} \right],\left[ \dfrac{\pi }{2},\pi \right],\left[ \pi ,\dfrac{3\pi }{2} \right],\left[ \dfrac{3\pi }{2},2\pi \right]\] which enclose equal area traced in the first, second, third and fourth quadrant respectively. So we have,
\[Area=\dfrac{3ab}{2}\times 4\int\limits_{0}^{\dfrac{\pi }{2}}{\left( {{\cos }^{2}}t{{\sin }^{2}}t \right)dt}\]
Now, we know that integration formula that
\[\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{m}}t}.{{\cos }^{n}}t=\left\{ \begin{matrix}
\dfrac{\left( m-1 \right)\left( m-3 \right)...1\cdot \left( n-1 \right)\left( n-3 \right)...1}{\left( m+n \right)\left( m+n-2 \right)...1}\times \dfrac{\pi }{2} & \text{if }m,n\text{ even} \\
\dfrac{\left( m-1 \right)\left( m-3 \right)....\left( 2\text{ or 1} \right)\left( n-1 \right)\left( n-3 \right)...\left( 2\text{ or 1} \right)}{\left( m+n \right)\left( m+n-2 \right)...\left( 2\text{ or 1} \right)} & \text{otherwise} \\
\end{matrix} \right.\]
We use the formula for the even condition with that is $m=n=2$in this problem.
\[\begin{align}
& Area=\dfrac{3ab}{2}\times 4\times \dfrac{\left( 2-1 \right)\left( 2-1 \right)}{\left( 2+2 \right)\left( 2+2-2 \right)}\times \dfrac{\pi }{2} \\
& Area=\dfrac{3ab}{2}\times 4\times \dfrac{1\times 1}{4\times 2}\times \dfrac{\pi }{2} \\
& Area=\dfrac{3ab\pi }{8} \\
\end{align}\]
So, option C is the correct answer.
Note: Definite integral gives the area bounded by a curve. Always consider a closed curve to find the area. The formula $\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{m}}x}.{{\cos }^{n}}x=\dfrac{\left( m-1 \right)\left( m-3 \right).........\left( n-1 \right)\left( n-3 \right)...}{\left( m+n \right)\left( m+n-2 \right)...}$ used is known as Wallis’s formula for definite integrals of powers of sine and cosine functions. We can find point of intersection of the curve with axes using $x=a{{\cos }^{3}}t=0,y=b{{\sin }^{3}}t=0$ and obtain the limits of for each quadrant.
\[Area=\dfrac{1}{2}\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( x\dfrac{dy}{dt}-y\dfrac{dx}{dt} \right)dt}\]
Now, consider $x=a{{\cos }^{3}}t$ and $y=b{{\sin }^{3}}t$ separately and differentiate both equations with respect to $t$. Then, put the values in the formula and integrate using the formula $\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{m}}t}.{{\cos }^{n}}t=\dfrac{\left( m-1 \right)\left( m-3 \right)...1\cdot \left( n-1 \right)\left( n-3 \right)...1}{\left( m+n \right)\left( m+n-2 \right)...1}\times \dfrac{\pi }{2}$ with even $m,n$ to obtain the desired result.
Complete step-by-step answer:
We have given equations $x=a{{\cos }^{3}}t$ and $y=b{{\sin }^{3}}t$
Now, first we will find $\dfrac{dy}{dt}$ and $\dfrac{dx}{dt}$.
$x=a{{\cos }^{3}}t$
Now, differentiate the equation with respect to $t$, we get
$\Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( a{{\cos }^{3}}t \right)$
Taking out the constant term, we get
\[\Rightarrow \dfrac{dx}{dt}=a\dfrac{d}{dt}\left( {{\cos }^{3}}t \right)\]
\[\Rightarrow \dfrac{dx}{dt}=a3{{\cos }^{2}}t\dfrac{d}{dt}\left( \cos t \right)\]
Now, we know that derivative of $\cos t=-\sin t$
So, when we solve further, we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}=a3{{\cos }^{2}}t\left( -\sin t \right) \\
& \Rightarrow \dfrac{dx}{dt}=-3a{{\cos }^{2}}t\sin t \\
\end{align}\]
Now, we will solve the equation $y=b{{\sin }^{3}}t$
Differentiating the equation with respect to $t$, we get
$\Rightarrow \dfrac{dy}{dt}=\dfrac{d}{dt}\left( b{{\sin }^{3}}t \right)$
Taking out the constant term, we get
$\begin{align}
& \Rightarrow \dfrac{dy}{dt}=b\dfrac{d}{dt}\left( {{\sin }^{3}}t \right) \\
& \Rightarrow \dfrac{dy}{dt}=b3{{\sin }^{2}}t\dfrac{d}{dt}\left( \sin t \right) \\
\end{align}$
Now, we know that derivative of $\sin t=\cos t$
So, when we solve further, we get
$\begin{align}
& \Rightarrow \dfrac{dy}{dt}=b3{{\sin }^{2}}t\left( \cos t \right) \\
& \Rightarrow \dfrac{dy}{dt}=3b{{\sin }^{2}}t\cos t \\
\end{align}$
Now, we will find the value of \[x\dfrac{dy}{dt}-y\dfrac{dx}{dt}\]
\[\begin{align}
& \Rightarrow x\dfrac{dy}{dt}-y\dfrac{dx}{dt}=a{{\cos }^{3}}t\left( 3b{{\sin }^{2}}t\cos t \right)-b{{\sin }^{3}}t\left( -3a{{\cos }^{2}}t\sin t \right) \\
& \Rightarrow x\dfrac{dy}{dt}-y\dfrac{dx}{dt}=3ab{{\cos }^{4}}t{{\sin }^{2}}t+3ab{{\cos }^{2}}t{{\sin }^{4}}t \\
\end{align}\]
Now, taking common terms out we get
\[\Rightarrow x\dfrac{dy}{dt}-y\dfrac{dx}{dt}=3ab{{\cos }^{2}}t{{\sin }^{2}}t\left( {{\cos }^{2}}t+{{\sin }^{2}}t \right)\]
We know that \[{{\cos }^{2}}x+{{\sin }^{2}}x=1\]
So, we get
\[\Rightarrow x\dfrac{dy}{dt}-y\dfrac{dx}{dt}=3ab{{\cos }^{2}}t{{\sin }^{2}}t\]
Now, the required area will be
\[Area=\dfrac{1}{2}\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( x\dfrac{dy}{dt}-y\dfrac{dx}{dt} \right)dt}\]
Put the values in the formula, we get
\[Area=\dfrac{1}{2}\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( 3ab{{\cos }^{2}}t{{\sin }^{2}}t \right)dt}\]
Now, to obtain a closed curve the value of $t$ varies from $0$ to $2\pi $
\[Area=\dfrac{1}{2}\int\limits_{0}^{2\pi }{\left( 3ab{{\cos }^{2}}t{{\sin }^{2}}t \right)dt}\]
Taking out the constant term, we get
\[Area=\dfrac{3ab}{2}\int\limits_{0}^{2\pi }{\left( {{\cos }^{2}}t{{\sin }^{2}}t \right)dt}\]
We can split the limits of integral into 4 equal parts with limits \[\left[ 0,\dfrac{\pi }{2} \right],\left[ \dfrac{\pi }{2},\pi \right],\left[ \pi ,\dfrac{3\pi }{2} \right],\left[ \dfrac{3\pi }{2},2\pi \right]\] which enclose equal area traced in the first, second, third and fourth quadrant respectively. So we have,
\[Area=\dfrac{3ab}{2}\times 4\int\limits_{0}^{\dfrac{\pi }{2}}{\left( {{\cos }^{2}}t{{\sin }^{2}}t \right)dt}\]
Now, we know that integration formula that
\[\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{m}}t}.{{\cos }^{n}}t=\left\{ \begin{matrix}
\dfrac{\left( m-1 \right)\left( m-3 \right)...1\cdot \left( n-1 \right)\left( n-3 \right)...1}{\left( m+n \right)\left( m+n-2 \right)...1}\times \dfrac{\pi }{2} & \text{if }m,n\text{ even} \\
\dfrac{\left( m-1 \right)\left( m-3 \right)....\left( 2\text{ or 1} \right)\left( n-1 \right)\left( n-3 \right)...\left( 2\text{ or 1} \right)}{\left( m+n \right)\left( m+n-2 \right)...\left( 2\text{ or 1} \right)} & \text{otherwise} \\
\end{matrix} \right.\]
We use the formula for the even condition with that is $m=n=2$in this problem.
\[\begin{align}
& Area=\dfrac{3ab}{2}\times 4\times \dfrac{\left( 2-1 \right)\left( 2-1 \right)}{\left( 2+2 \right)\left( 2+2-2 \right)}\times \dfrac{\pi }{2} \\
& Area=\dfrac{3ab}{2}\times 4\times \dfrac{1\times 1}{4\times 2}\times \dfrac{\pi }{2} \\
& Area=\dfrac{3ab\pi }{8} \\
\end{align}\]
So, option C is the correct answer.
Note: Definite integral gives the area bounded by a curve. Always consider a closed curve to find the area. The formula $\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{m}}x}.{{\cos }^{n}}x=\dfrac{\left( m-1 \right)\left( m-3 \right).........\left( n-1 \right)\left( n-3 \right)...}{\left( m+n \right)\left( m+n-2 \right)...}$ used is known as Wallis’s formula for definite integrals of powers of sine and cosine functions. We can find point of intersection of the curve with axes using $x=a{{\cos }^{3}}t=0,y=b{{\sin }^{3}}t=0$ and obtain the limits of for each quadrant.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

