
The angular momentum of a particle about origin is varying as L = 4t + 8 (SI units) when it moves along a straight line y = x - 4 (x, y in meters). The magnitude of force acting on the particle would be:
A. 1 N
B. 2 N
C. N
D. N
Answer
560.7k+ views
1 likes
Hint: We are given the angular momentum L and the rate of change of angular momentum should give us torque. Find the way of converting the given direction of its motion into a vector then use the torque formula to find the force.
Formula used:
The rate of change of angular momentum is torque:
.
Torque acting on a body is also given by relation:
.
Complete answer:
For the given particle, we have the angular momentum L = 4t + 8. This means that it is changing with time because as the value of t changes, L changes too. Therefore, the rate of change of angular momentum becomes:
.
This means that the magnitude of torque is 4 units.
Now, the particle happens to be moving along a straight line y = x -4. This means that the position of the particle at any point is given by this equation. So, we can find the vector from the origin in the following manner:
1. Finding any two points that satisfy the equation for this line along which the particle moves. If we keep x = 0 we get y = - 4. If we keep x = 2, we get y = -2.
2. Now, our required vector will be joining these two points so, the vector going from (0, -4) to (2, -2) can be written as:
.
The magnitude of this vector can be written as:
.
The magnitude of torque can be written simply as:
,
where F is the magnitude of force acting and r is the perpendicular distance from the axis.
So, we may write:
N.
So, the correct answer is “Option C”.
Note:
The tricky part in the question is to find out the vector , which is supposed to be the distance perpendicular to which the force is acting. Also, as the question says 'angular momentum is varying as L = 4t + 8', one might assume that this is the rate of change of angular momentum but clearly as it is written in terms of L it is the expression for angular momentum itself.
Formula used:
The rate of change of angular momentum is torque:
Torque acting on a body is also given by relation:
Complete answer:
For the given particle, we have the angular momentum L = 4t + 8. This means that it is changing with time because as the value of t changes, L changes too. Therefore, the rate of change of angular momentum becomes:
This means that the magnitude of torque is 4 units.
Now, the particle happens to be moving along a straight line y = x -4. This means that the position of the particle at any point is given by this equation. So, we can find the vector from the origin in the following manner:
1. Finding any two points that satisfy the equation for this line along which the particle moves. If we keep x = 0 we get y = - 4. If we keep x = 2, we get y = -2.
2. Now, our required vector will be joining these two points so, the vector going from (0, -4) to (2, -2) can be written as:
The magnitude of this vector can be written as:
The magnitude of torque can be written simply as:
where F is the magnitude of force acting and r is the perpendicular distance from the axis.
So, we may write:
So, the correct answer is “Option C”.
Note:
The tricky part in the question is to find out the vector
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

