
What will be the amount of dissociation is if the volume is increased 16 times of the initial volume in the reaction\[PC{{l}_{5}}\rightleftharpoons PC{{l}_{3}}+C{{l}_{2}}\]?
A.4 times
B.\[\dfrac{1}{4}\]times
C.2 times
D.\[\dfrac{1}{5}\]times
Answer
598.8k+ views
Hint: The amount of dissociation (\[\alpha \]) is inversely proportional to the square root of the pressure in the reaction.
The universal gas equation PV = nRT tells that the pressure of the gas is inversely proportional to the volume of the gas.
Here, P = pressure of the gas, V = volume of the gas, n = number of moles of the gas, R = Universal gas constant, T = temperature of the gas.
Complete step by step answer:
\[PC{{l}_{5}}\rightleftharpoons PC{{l}_{3}}+C{{l}_{2}}\]
\[\alpha \]= degree of dissociation of \[PC{{l}_{5}}\]
P = total pressure at the equilibrium condition
Let, the number of moles of \[PC{{l}_{5}}\]present is 1mole.
The number of moles of \[PC{{l}_{5}}\]dissociated to form \[PC{{l}_{3}}\]and \[C{{l}_{2}}\]be \[\alpha \].
So, the number of moles of \[PC{{l}_{5}}\]remained at equilibrium = (\[1-\alpha \])
Total number of moles = \[(1-\alpha )+\alpha +\alpha \]= (\[1+\alpha \])
Mole fraction of \[PC{{l}_{5}}\]= \[\dfrac{1-\alpha }{1+\alpha }\]
Mole fraction of \[PC{{l}_{3}}\]= \[\dfrac{\alpha }{1+\alpha }\]
Mole fraction of \[C{{l}_{2}}\]= \[\dfrac{\alpha }{1+\alpha }\]
According to the Dalton’s law of partial pressure,
Partial pressure of \[PC{{l}_{5}}\]=\[\dfrac{1-\alpha }{1+\alpha }\]P
Partial pressure of \[PC{{l}_{3}}\]= \[\dfrac{\alpha }{1+\alpha }\]P
Partial pressure of \[C{{l}_{2}}\]= \[\dfrac{\alpha }{1+\alpha }\]P
So, equilibrium constant of partial pressure, \[{{K}_{P}}\]= \[\dfrac{{{P}_{PC{{l}_{3}}}}{{P}_{C{{l}_{2}}}}}{{{P}_{PC{{l}_{5}}}}}\]= \[\dfrac{\dfrac{\alpha }{1+\alpha }P\times \dfrac{\alpha }{1+\alpha }P}{\dfrac{1-\alpha }{1+\alpha }P}\]
\[{{K}_{P}}\]= \[\dfrac{{{\alpha }^{2}}P}{1-{{\alpha }^{2}}}\]
Or, \[{{K}_{P}}\]= \[{{\alpha }^{2}}P\] [\[1-{{\alpha }^{2}}\approx 1\]]
Degree of dissociation,\[\alpha =\sqrt{\dfrac{{{K}_{P}}}{P}}\]
\[\alpha \propto {}^{1}/{}_{\sqrt{P}}\]
Now, PV = nRT
\[P\propto {}^{1}/{}_{V}\]
So, \[\alpha \propto \sqrt{V}\]
Given, the volume is increased 16 times of the initial volume in the reaction
\[\alpha \propto \sqrt{16}\]
\[\Rightarrow \] 4 times
The amount of dissociation is if the volume is increased 16 times of the initial volume in the reaction\[PC{{l}_{5}}\rightleftharpoons PC{{l}_{3}}+C{{l}_{2}}\] will be 4 times.
So, the correct option is A.
Note: According to the Dalton’s Law of Partial Pressure in terms of mole fraction, mathematically we can say,
\[{{p}_{i}}={{\chi }_{i}}{{p}_{total}}\] [\[{{p}_{i}}\]= partial pressure of a gas, \[{{\chi }_{i}}\]= mole fraction of the gas, \[{{p}_{total}}\]= total pressure in the system]
The universal gas equation PV = nRT tells that the pressure of the gas is inversely proportional to the volume of the gas.
Here, P = pressure of the gas, V = volume of the gas, n = number of moles of the gas, R = Universal gas constant, T = temperature of the gas.
Complete step by step answer:
\[PC{{l}_{5}}\rightleftharpoons PC{{l}_{3}}+C{{l}_{2}}\]
\[\alpha \]= degree of dissociation of \[PC{{l}_{5}}\]
P = total pressure at the equilibrium condition
Let, the number of moles of \[PC{{l}_{5}}\]present is 1mole.
The number of moles of \[PC{{l}_{5}}\]dissociated to form \[PC{{l}_{3}}\]and \[C{{l}_{2}}\]be \[\alpha \].
So, the number of moles of \[PC{{l}_{5}}\]remained at equilibrium = (\[1-\alpha \])
Total number of moles = \[(1-\alpha )+\alpha +\alpha \]= (\[1+\alpha \])
Mole fraction of \[PC{{l}_{5}}\]= \[\dfrac{1-\alpha }{1+\alpha }\]
Mole fraction of \[PC{{l}_{3}}\]= \[\dfrac{\alpha }{1+\alpha }\]
Mole fraction of \[C{{l}_{2}}\]= \[\dfrac{\alpha }{1+\alpha }\]
According to the Dalton’s law of partial pressure,
Partial pressure of \[PC{{l}_{5}}\]=\[\dfrac{1-\alpha }{1+\alpha }\]P
Partial pressure of \[PC{{l}_{3}}\]= \[\dfrac{\alpha }{1+\alpha }\]P
Partial pressure of \[C{{l}_{2}}\]= \[\dfrac{\alpha }{1+\alpha }\]P
So, equilibrium constant of partial pressure, \[{{K}_{P}}\]= \[\dfrac{{{P}_{PC{{l}_{3}}}}{{P}_{C{{l}_{2}}}}}{{{P}_{PC{{l}_{5}}}}}\]= \[\dfrac{\dfrac{\alpha }{1+\alpha }P\times \dfrac{\alpha }{1+\alpha }P}{\dfrac{1-\alpha }{1+\alpha }P}\]
\[{{K}_{P}}\]= \[\dfrac{{{\alpha }^{2}}P}{1-{{\alpha }^{2}}}\]
Or, \[{{K}_{P}}\]= \[{{\alpha }^{2}}P\] [\[1-{{\alpha }^{2}}\approx 1\]]
Degree of dissociation,\[\alpha =\sqrt{\dfrac{{{K}_{P}}}{P}}\]
\[\alpha \propto {}^{1}/{}_{\sqrt{P}}\]
Now, PV = nRT
\[P\propto {}^{1}/{}_{V}\]
So, \[\alpha \propto \sqrt{V}\]
Given, the volume is increased 16 times of the initial volume in the reaction
\[\alpha \propto \sqrt{16}\]
\[\Rightarrow \] 4 times
The amount of dissociation is if the volume is increased 16 times of the initial volume in the reaction\[PC{{l}_{5}}\rightleftharpoons PC{{l}_{3}}+C{{l}_{2}}\] will be 4 times.
So, the correct option is A.
Note: According to the Dalton’s Law of Partial Pressure in terms of mole fraction, mathematically we can say,
\[{{p}_{i}}={{\chi }_{i}}{{p}_{total}}\] [\[{{p}_{i}}\]= partial pressure of a gas, \[{{\chi }_{i}}\]= mole fraction of the gas, \[{{p}_{total}}\]= total pressure in the system]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

