
The \[{{4}^{th}}\]roots of unity in the argand plane form what shape?
Answer
506.1k+ views
Hint: In this problem, we have to find the shape formed by the \[{{4}^{th}}\]roots of unity in the argand plane. We can first find what are the four roots and the angle between them and we can plot the roots in the argand plane to find the shape formed by the \[{{4}^{th}}\]roots of unity.
Complete step by step answer:
Here we have to find the shape formed by \[{{4}^{th}}\]roots of unity in the argand plane.
We can first find what are the four roots and the angle between them and we can plot the roots in the argand plane to find the shape formed by the \[{{4}^{th}}\]roots of unity.
We know that for \[{{4}^{th}}\]root of unity,
\[\begin{align}
& \Rightarrow x=\sqrt[4]{1} \\
& \Rightarrow {{x}^{4}}=1 \\
\end{align}\]
On solving this, we will get
\[\Rightarrow {{x}^{4}}=\cos \dfrac{2\pi }{4}k+i\sin \dfrac{2\pi }{4}k\]
Now we can substitute for the value of k, to find the roots.
Let k = 0, we get
\[\Rightarrow x=\cos \dfrac{2\pi }{4}\left( 0 \right)+i\sin \dfrac{2\pi }{4}\left( 0 \right)=1+0=1\]
Let k = 1, we get
\[\Rightarrow x=\cos \dfrac{2\pi }{4}\left( 1 \right)+i\sin \dfrac{2\pi }{4}\left( 1 \right)=0+i\left( 1 \right)=i\]
Let k = 2, we get
\[\Rightarrow x=\cos \dfrac{2\pi }{4}\left( 2 \right)+i\sin \dfrac{2\pi }{4}\left( 0 \right)=-1+0=-1\]
Let k = -1, we get
\[\Rightarrow x=\cos \dfrac{2\pi }{4}\left( -1 \right)+i\sin \dfrac{2\pi }{4}\left( -1 \right)=0+i\left( -1 \right)=-i\]
Therefore, the fourth roots of unity are \[i,-i,1,-1\].
We can now see that the angle formed here is exactly \[{{90}^{\circ }}\].
We can now plot these roots in the argand plane, we get
Therefore, the fourth roots of unity form a square.
Note: We should always remember that the fourth roots of unity are \[i,-i,1,-1\] the angle formed here is exactly \[{{90}^{\circ }}\]. Therefore, after plotting, we can see that the fourth roots of unity form a square in the argand plane.
Complete step by step answer:
Here we have to find the shape formed by \[{{4}^{th}}\]roots of unity in the argand plane.
We can first find what are the four roots and the angle between them and we can plot the roots in the argand plane to find the shape formed by the \[{{4}^{th}}\]roots of unity.
We know that for \[{{4}^{th}}\]root of unity,
\[\begin{align}
& \Rightarrow x=\sqrt[4]{1} \\
& \Rightarrow {{x}^{4}}=1 \\
\end{align}\]
On solving this, we will get
\[\Rightarrow {{x}^{4}}=\cos \dfrac{2\pi }{4}k+i\sin \dfrac{2\pi }{4}k\]
Now we can substitute for the value of k, to find the roots.
Let k = 0, we get
\[\Rightarrow x=\cos \dfrac{2\pi }{4}\left( 0 \right)+i\sin \dfrac{2\pi }{4}\left( 0 \right)=1+0=1\]
Let k = 1, we get
\[\Rightarrow x=\cos \dfrac{2\pi }{4}\left( 1 \right)+i\sin \dfrac{2\pi }{4}\left( 1 \right)=0+i\left( 1 \right)=i\]
Let k = 2, we get
\[\Rightarrow x=\cos \dfrac{2\pi }{4}\left( 2 \right)+i\sin \dfrac{2\pi }{4}\left( 0 \right)=-1+0=-1\]
Let k = -1, we get
\[\Rightarrow x=\cos \dfrac{2\pi }{4}\left( -1 \right)+i\sin \dfrac{2\pi }{4}\left( -1 \right)=0+i\left( -1 \right)=-i\]
Therefore, the fourth roots of unity are \[i,-i,1,-1\].
We can now see that the angle formed here is exactly \[{{90}^{\circ }}\].
We can now plot these roots in the argand plane, we get
Therefore, the fourth roots of unity form a square.
Note: We should always remember that the fourth roots of unity are \[i,-i,1,-1\] the angle formed here is exactly \[{{90}^{\circ }}\]. Therefore, after plotting, we can see that the fourth roots of unity form a square in the argand plane.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

