
Tangents are drawn to the circle \[{{x}^{2}}+{{y}^{2}}=12\] at the point where it met by the circle \[{{x}^{2}}+{{y}^{2}}-5x+3y-2=0;\] find the point of intersection of these tangents.
Answer
465.6k+ views
Hint:
The given equation of two circles are \[{{x}^{2}}+{{y}^{2}}=12\] (1) and \[{{x}^{2}}+{{y}^{2}}-5x+3y-2=0;\](2). We will find the equation of the common chord of the circle which we can assume as equation (3). Let this line meet the circle 1 (or 2) at A and B. let the tangents to circle 1 at A and B meet at P (a, b), then AB will be the chord of contact of a tangent to circle 1 from P, therefore, we will get the equation of AB (4). Now lines (3) and (4) are identical, now from equating the lines we get the point of intersection of the tangents.
Complete step by step answer:
We know that the given equation of circles is,
\[{{S}_{1}}={{x}^{2}}+{{y}^{2}}=12\]……….. (1)
\[{{S}_{2}}={{x}^{2}}+{{y}^{2}}-5x+3y-2=0;\]…….. (2)
We also know the equation of the common chord of the circles (1) and (2).
\[\begin{align}
& {{S}_{1}}-{{S}_{2}}=0 \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}-12-{{x}^{2}}-{{y}^{2}}+5x-3y+2=0 \\
& \Rightarrow 5x-3y-10=0........(3) \\
\end{align}\].
Let this line meet circle 1 (or 2) at A and B.
Let the tangents to circle 1 at A and B meet at P (a, b), then AB is the chord of contact of the tangent to circle 1 from P.
Therefore, we will get the equation of AB
\[xa+yb-12=0......(4)\]
Now the lines (3) and (4) are identical
\[\begin{align}
& \Rightarrow \dfrac{a}{b}=\dfrac{b}{-3}=\dfrac{-12}{-10} \\
& \Rightarrow \dfrac{b}{-3}=\dfrac{6}{5} \\
& \Rightarrow b=\dfrac{-18}{5} \\
& \Rightarrow a=6 \\
& \therefore a=6,b=\dfrac{-18}{5} \\
& \text{ P=}\left( \text{6,}\dfrac{-18}{5} \right) \\
\end{align}\]
Therefore, the point of intersection of tangent is \[\text{P=}\left( \text{6,}\dfrac{-18}{5} \right)\]
Note:
Another method
Here we are going to use the formula method
we know that the given two equation of circles are
\[{{S}_{1}}={{x}^{2}}+{{y}^{2}}=12\]
\[{{S}_{2}}={{x}^{2}}+{{y}^{2}}-5x+3y-2=0;\]
We know that the chord of intersection is
\[\begin{align}
& {{S}_{1}}-{{S}_{2}}=0 \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}-12-{{x}^{2}}-{{y}^{2}}+5x-3y+2=0 \\
& \Rightarrow 5x-3y-10=0........(3) \\
\end{align}\]
Comparing equation (1) with the below equation, we get
\[\begin{align}
& lx+my+n=0 \\
& l=5,m=-3,n=-10 \\
\end{align}\]
We know that
Point of intersection of tangents as given in the concept = \[\left( \dfrac{-{{a}^{2}}l}{n},\dfrac{-{{a}^{2}}m}{n} \right)\]……... (2)
Here \[{{a}^{2}}=12\]
We already found the value of l, m, n. Substituting the value of l, m, n in (2)
Now we get,
\[\begin{align}
& \Rightarrow \left( \dfrac{-12\times 5}{-10},\dfrac{-12\times -3}{-10} \right) \\
& \Rightarrow \left( 6,\dfrac{-18}{5} \right) \\
\end{align}\]
Therefore, The point of intersection \[\text{P=}\left( \text{6,}\dfrac{-18}{5} \right)\]
The given equation of two circles are \[{{x}^{2}}+{{y}^{2}}=12\] (1) and \[{{x}^{2}}+{{y}^{2}}-5x+3y-2=0;\](2). We will find the equation of the common chord of the circle which we can assume as equation (3). Let this line meet the circle 1 (or 2) at A and B. let the tangents to circle 1 at A and B meet at P (a, b), then AB will be the chord of contact of a tangent to circle 1 from P, therefore, we will get the equation of AB (4). Now lines (3) and (4) are identical, now from equating the lines we get the point of intersection of the tangents.
Complete step by step answer:
We know that the given equation of circles is,
\[{{S}_{1}}={{x}^{2}}+{{y}^{2}}=12\]……….. (1)
\[{{S}_{2}}={{x}^{2}}+{{y}^{2}}-5x+3y-2=0;\]…….. (2)
We also know the equation of the common chord of the circles (1) and (2).
\[\begin{align}
& {{S}_{1}}-{{S}_{2}}=0 \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}-12-{{x}^{2}}-{{y}^{2}}+5x-3y+2=0 \\
& \Rightarrow 5x-3y-10=0........(3) \\
\end{align}\].
Let this line meet circle 1 (or 2) at A and B.

Let the tangents to circle 1 at A and B meet at P (a, b), then AB is the chord of contact of the tangent to circle 1 from P.
Therefore, we will get the equation of AB
\[xa+yb-12=0......(4)\]
Now the lines (3) and (4) are identical
\[\begin{align}
& \Rightarrow \dfrac{a}{b}=\dfrac{b}{-3}=\dfrac{-12}{-10} \\
& \Rightarrow \dfrac{b}{-3}=\dfrac{6}{5} \\
& \Rightarrow b=\dfrac{-18}{5} \\
& \Rightarrow a=6 \\
& \therefore a=6,b=\dfrac{-18}{5} \\
& \text{ P=}\left( \text{6,}\dfrac{-18}{5} \right) \\
\end{align}\]
Therefore, the point of intersection of tangent is \[\text{P=}\left( \text{6,}\dfrac{-18}{5} \right)\]
Note:
Another method
Here we are going to use the formula method
we know that the given two equation of circles are
\[{{S}_{1}}={{x}^{2}}+{{y}^{2}}=12\]
\[{{S}_{2}}={{x}^{2}}+{{y}^{2}}-5x+3y-2=0;\]
We know that the chord of intersection is
\[\begin{align}
& {{S}_{1}}-{{S}_{2}}=0 \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}-12-{{x}^{2}}-{{y}^{2}}+5x-3y+2=0 \\
& \Rightarrow 5x-3y-10=0........(3) \\
\end{align}\]
Comparing equation (1) with the below equation, we get
\[\begin{align}
& lx+my+n=0 \\
& l=5,m=-3,n=-10 \\
\end{align}\]
We know that
Point of intersection of tangents as given in the concept = \[\left( \dfrac{-{{a}^{2}}l}{n},\dfrac{-{{a}^{2}}m}{n} \right)\]……... (2)
Here \[{{a}^{2}}=12\]
We already found the value of l, m, n. Substituting the value of l, m, n in (2)
Now we get,
\[\begin{align}
& \Rightarrow \left( \dfrac{-12\times 5}{-10},\dfrac{-12\times -3}{-10} \right) \\
& \Rightarrow \left( 6,\dfrac{-18}{5} \right) \\
\end{align}\]
Therefore, The point of intersection \[\text{P=}\left( \text{6,}\dfrac{-18}{5} \right)\]
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Truly whole mankind is one was declared by the Kannada class 10 social science CBSE

Explain the three major features of the shiwaliks class 10 social science CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

What are the public facilities provided by the government? Also explain each facility

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Question An example of homologous organs is a Our arm class 10 biology CBSE
