
Take the mean distance of the moon and the sun from earth to be \[4 \times {10^5}\,{\text{km}}\] and \[150 \times {10^6}\,{\text{km}}\] respectively. Their masses are \[8 \times {10^{22}}\,{\text{kg}}\] and \[2 \times {10^{30}}\,{\text{kg}}\] respectively. The radius of the earth is. Let \[{F_1}\] be the difference in the forces exerted by the moon at the nearest and farthest point on the earth and \[{F_2}\] be difference in the force exerted by the sun at the nearest and farthest points on the earth. Then the number closest to \[\dfrac{{{F_1}}}{{{F_2}}}\] is:
A. 0.01
B. 2
C. 0.6
D. 6
Answer
550.5k+ views
Hint:Use the expression for Newton’s law of gravitation. Using this formula, derive the expressions for the gravitational force of attraction between the earth and moon and the earth and sun at nearest and farthest points. Substitute these values in the given relation and calculate the required ratio.
Formula used:
The expression for Newton’s law of gravitation is
\[F = \dfrac{{G{m_1}{m_2}}}{{{r^2}}}\] …… (1)
Here, \[F\] is the force of attraction between the two objects, \[G\] is the universal gravitational constant, \[{m_1}\] and \[{m_2}\] are masses of the two objects and \[r\] is the distance between the centres of the two objects.
Complete step by step answer:
We have given that the mean distance between the moon and earth is \[4 \times {10^5}\,{\text{km}}\] and the mean distance between the sun and earth is \[150 \times {10^6}\,{\text{km}}\].
\[{d_1} = 4 \times {10^5}\,{\text{km}}\]
\[ \Rightarrow{d_2} = 150 \times {10^6}\,{\text{km}}\]
The masses of moon and the sun are \[8 \times {10^{22}}\,{\text{kg}}\] and \[2 \times {10^{30}}\,{\text{kg}}\] respectively.
\[{m_M} = 8 \times {10^{22}}\,{\text{kg}}\]
\[ \Rightarrow{m_S} = 2 \times {10^{30}}\,{\text{kg}}\]
Let \[{F_{1N}}\] be the force of attraction between the moon and the earth at the nearest point on the earth and \[{F_{1F}}\] be the force of attraction between the moon and the earth at the farthest point on the earth.Let \[{d_1}\] be the nearest distance between the moon and the earth.Hence, the force \[{F_1}\] becomes
\[{F_1} = {F_{1N}} - {F_{1F}}\]
\[ \Rightarrow {F_1} = \dfrac{{G{m_E}{m_M}}}{{d_1^2}} - \dfrac{{G{m_E}{m_M}}}{{{{\left( {{d_1} + R} \right)}^2}}}\]
Here, \[R\] is the radius of the earth.
Let \[{F_{2N}}\] be the force of attraction between the sun and the earth at the nearest point on the earth and \[{F_{2F}}\] be the force of attraction between the sun and the earth at the farthest point on the earth.Let \[{d_2}\] be the nearest distance between the sun and the earth.Hence, the force \[{F_2}\] becomes
\[{F_2} = {F_{2N}} - {F_{2F}}\]
\[ \Rightarrow {F_2} = \dfrac{{G{m_E}{m_S}}}{{d_2^2}} - \dfrac{{G{m_E}{m_S}}}{{{{\left( {{d_2} + R} \right)}^2}}}\]
Let us now calculate the ratio \[\dfrac{{{F_1}}}{{{F_2}}}\].
\[\dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{\dfrac{{G{m_E}{m_M}}}{{d_1^2}} - \dfrac{{G{m_E}{m_M}}}{{{{\left( {{d_1} + R} \right)}^2}}}}}{{\dfrac{{G{m_E}{m_S}}}{{d_2^2}} - \dfrac{{G{m_E}{m_S}}}{{{{\left( {{d_2} + R} \right)}^2}}}}}\]
\[ \Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{G{m_E}{m_M}\left[ {\dfrac{1}{{d_1^2}} - \dfrac{1}{{{{\left( {{d_1} + R} \right)}^2}}}} \right]}}{{G{m_E}{m_S}\left[ {\dfrac{1}{{d_2^2}} - \dfrac{1}{{{{\left( {{d_2} + R} \right)}^2}}}} \right]}}\]
\[ \Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{m_M}\left[ {\dfrac{{d_1^2 - d_1^2 + 2{d_1}R + {R^2}}}{{d_1^2{{\left( {{d_1} + R} \right)}^2}}}} \right]}}{{{m_S}\left[ {\dfrac{{d_2^2 - d_2^2 + 2{d_2}R - {R^2}}}{{d_2^2{{\left( {{d_2} + R} \right)}^2}}}} \right]}}\]
\[ \Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{m_M}\left[ {\dfrac{{2{d_1}R + {R^2}}}{{d_1^2{{\left( {{d_1} + R} \right)}^2}}}} \right]}}{{{m_S}\left[ {\dfrac{{2{d_2}R - {R^2}}}{{d_2^2{{\left( {{d_2} + R} \right)}^2}}}} \right]}}\]
We know that \[R < < {d_1}\] and \[R < < {d_2}\]. So we can neglect \[R\].
\[ \Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{m_M}\left[ {\dfrac{{2{d_1}R}}{{d_1^2d_1^2}}} \right]}}{{{m_S}\left[ {\dfrac{{2{d_2}R}}{{d_2^2d_2^2}}} \right]}}\]
\[ \Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{m_M}\left[ {\dfrac{1}{{d_1^3}}} \right]}}{{{m_S}\left[ {\dfrac{1}{{d_2^3}}} \right]}}\]
\[ \Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{m_M}}}{{{m_S}}} \times \dfrac{{d_2^3}}{{d_1^3}}\]
\[ \Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{m_M}}}{{{m_S}}} \times {\left( {\dfrac{{{d_2}}}{{{d_1}}}} \right)^3}\]
Substitute \[4 \times {10^5}\,{\text{km}}\] for \[{d_1}\], \[150 \times {10^6}\,{\text{km}}\] for \[{d_2}\], \[8 \times {10^{22}}\,{\text{kg}}\] for \[{m_M}\] and \[2 \times {10^{30}}\,{\text{kg}}\] for \[{m_S}\] in the above equation.
\[ \Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{8 \times {{10}^{22}}\,{\text{kg}}}}{{2 \times {{10}^{30}}\,{\text{kg}}}} \times {\left( {\dfrac{{150 \times {{10}^6}\,{\text{km}}}}{{4 \times {{10}^5}\,{\text{km}}}}} \right)^3}\]
\[ \Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{8 \times {{10}^{22}}\,{\text{kg}}}}{{2 \times {{10}^{30}}\,{\text{kg}}}} \times {\left( {\dfrac{{150 \times {{10}^9}\,{\text{m}}}}{{4 \times {{10}^8}\,{\text{m}}}}} \right)^3}\]
\[ \Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = 2.1\]
\[ \therefore \dfrac{{{F_1}}}{{{F_2}}} \approx 2\]
Therefore, the number closest to \[\dfrac{{{F_1}}}{{{F_2}}}\] is 2.
Hence, the correct option is B.
Note:The students should keep in mind that the radius of the earth is very small compared to the mean distance between the earth and moon and mean distance between the earth and sun. Hence, we have neglected or eliminated the terms including radius of the earth from the calculations and there will be no large difference in the final answer due to this elimination.
Formula used:
The expression for Newton’s law of gravitation is
\[F = \dfrac{{G{m_1}{m_2}}}{{{r^2}}}\] …… (1)
Here, \[F\] is the force of attraction between the two objects, \[G\] is the universal gravitational constant, \[{m_1}\] and \[{m_2}\] are masses of the two objects and \[r\] is the distance between the centres of the two objects.
Complete step by step answer:
We have given that the mean distance between the moon and earth is \[4 \times {10^5}\,{\text{km}}\] and the mean distance between the sun and earth is \[150 \times {10^6}\,{\text{km}}\].
\[{d_1} = 4 \times {10^5}\,{\text{km}}\]
\[ \Rightarrow{d_2} = 150 \times {10^6}\,{\text{km}}\]
The masses of moon and the sun are \[8 \times {10^{22}}\,{\text{kg}}\] and \[2 \times {10^{30}}\,{\text{kg}}\] respectively.
\[{m_M} = 8 \times {10^{22}}\,{\text{kg}}\]
\[ \Rightarrow{m_S} = 2 \times {10^{30}}\,{\text{kg}}\]
Let \[{F_{1N}}\] be the force of attraction between the moon and the earth at the nearest point on the earth and \[{F_{1F}}\] be the force of attraction between the moon and the earth at the farthest point on the earth.Let \[{d_1}\] be the nearest distance between the moon and the earth.Hence, the force \[{F_1}\] becomes
\[{F_1} = {F_{1N}} - {F_{1F}}\]
\[ \Rightarrow {F_1} = \dfrac{{G{m_E}{m_M}}}{{d_1^2}} - \dfrac{{G{m_E}{m_M}}}{{{{\left( {{d_1} + R} \right)}^2}}}\]
Here, \[R\] is the radius of the earth.
Let \[{F_{2N}}\] be the force of attraction between the sun and the earth at the nearest point on the earth and \[{F_{2F}}\] be the force of attraction between the sun and the earth at the farthest point on the earth.Let \[{d_2}\] be the nearest distance between the sun and the earth.Hence, the force \[{F_2}\] becomes
\[{F_2} = {F_{2N}} - {F_{2F}}\]
\[ \Rightarrow {F_2} = \dfrac{{G{m_E}{m_S}}}{{d_2^2}} - \dfrac{{G{m_E}{m_S}}}{{{{\left( {{d_2} + R} \right)}^2}}}\]
Let us now calculate the ratio \[\dfrac{{{F_1}}}{{{F_2}}}\].
\[\dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{\dfrac{{G{m_E}{m_M}}}{{d_1^2}} - \dfrac{{G{m_E}{m_M}}}{{{{\left( {{d_1} + R} \right)}^2}}}}}{{\dfrac{{G{m_E}{m_S}}}{{d_2^2}} - \dfrac{{G{m_E}{m_S}}}{{{{\left( {{d_2} + R} \right)}^2}}}}}\]
\[ \Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{G{m_E}{m_M}\left[ {\dfrac{1}{{d_1^2}} - \dfrac{1}{{{{\left( {{d_1} + R} \right)}^2}}}} \right]}}{{G{m_E}{m_S}\left[ {\dfrac{1}{{d_2^2}} - \dfrac{1}{{{{\left( {{d_2} + R} \right)}^2}}}} \right]}}\]
\[ \Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{m_M}\left[ {\dfrac{{d_1^2 - d_1^2 + 2{d_1}R + {R^2}}}{{d_1^2{{\left( {{d_1} + R} \right)}^2}}}} \right]}}{{{m_S}\left[ {\dfrac{{d_2^2 - d_2^2 + 2{d_2}R - {R^2}}}{{d_2^2{{\left( {{d_2} + R} \right)}^2}}}} \right]}}\]
\[ \Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{m_M}\left[ {\dfrac{{2{d_1}R + {R^2}}}{{d_1^2{{\left( {{d_1} + R} \right)}^2}}}} \right]}}{{{m_S}\left[ {\dfrac{{2{d_2}R - {R^2}}}{{d_2^2{{\left( {{d_2} + R} \right)}^2}}}} \right]}}\]
We know that \[R < < {d_1}\] and \[R < < {d_2}\]. So we can neglect \[R\].
\[ \Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{m_M}\left[ {\dfrac{{2{d_1}R}}{{d_1^2d_1^2}}} \right]}}{{{m_S}\left[ {\dfrac{{2{d_2}R}}{{d_2^2d_2^2}}} \right]}}\]
\[ \Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{m_M}\left[ {\dfrac{1}{{d_1^3}}} \right]}}{{{m_S}\left[ {\dfrac{1}{{d_2^3}}} \right]}}\]
\[ \Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{m_M}}}{{{m_S}}} \times \dfrac{{d_2^3}}{{d_1^3}}\]
\[ \Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{m_M}}}{{{m_S}}} \times {\left( {\dfrac{{{d_2}}}{{{d_1}}}} \right)^3}\]
Substitute \[4 \times {10^5}\,{\text{km}}\] for \[{d_1}\], \[150 \times {10^6}\,{\text{km}}\] for \[{d_2}\], \[8 \times {10^{22}}\,{\text{kg}}\] for \[{m_M}\] and \[2 \times {10^{30}}\,{\text{kg}}\] for \[{m_S}\] in the above equation.
\[ \Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{8 \times {{10}^{22}}\,{\text{kg}}}}{{2 \times {{10}^{30}}\,{\text{kg}}}} \times {\left( {\dfrac{{150 \times {{10}^6}\,{\text{km}}}}{{4 \times {{10}^5}\,{\text{km}}}}} \right)^3}\]
\[ \Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{8 \times {{10}^{22}}\,{\text{kg}}}}{{2 \times {{10}^{30}}\,{\text{kg}}}} \times {\left( {\dfrac{{150 \times {{10}^9}\,{\text{m}}}}{{4 \times {{10}^8}\,{\text{m}}}}} \right)^3}\]
\[ \Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = 2.1\]
\[ \therefore \dfrac{{{F_1}}}{{{F_2}}} \approx 2\]
Therefore, the number closest to \[\dfrac{{{F_1}}}{{{F_2}}}\] is 2.
Hence, the correct option is B.
Note:The students should keep in mind that the radius of the earth is very small compared to the mean distance between the earth and moon and mean distance between the earth and sun. Hence, we have neglected or eliminated the terms including radius of the earth from the calculations and there will be no large difference in the final answer due to this elimination.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

