
Stoke’s law states that the viscous drag force $ F $ experienced by a sphere of radius $ a $ , moving with a speed $ v $ through a fluid and coefficient of viscosity $ \eta $ , is given by $ F = 6\pi \eta av $ . If this fluid is flowing through a cylindrical pipe of radius $ r $ , length $ l $ and a pressure difference of $ p $ across its two ends, the volume of water $ V $ which flows through the pipe on time $ t $ can be written as $ \dfrac{V}{t} = k{\left( {\dfrac{p}{l}} \right)^a}{\eta ^b}{r^c} $ where, $ k $ is the dimensionless constant. Correct values of $ a,b\& c $ are:
(A) $ a = 1,b = - 1,c = 4 $
(B) $ a = - 1,b = 1,c = 4 $
(C) $ a = 2,b = - 2,c = 3 $
(D) $ a = 1,b = - 2,c = - 4 $
Answer
508.2k+ views
Hint :Here, it has been asked to find the values of $ a,b\& c $ from the formula given above. Thus we have to calculate with the help of dimensions of each term used in the formula $ \dfrac{V}{t} = k{\left( {\dfrac{p}{l}} \right)^a}{\eta ^b}{r^c} $
Where, $ V $ is the volume of water, $ r $ is the radius of the cylindrical pipe, $ l $ is the length, $ p $ is the pressure, $ t $ is the time and $ \eta $ is the viscosity.
Complete Step By Step Answer:
Let us first use the dimensional formulas of all the terms used in the given formula.
$ \dfrac{V}{t} = k{\left( {\dfrac{p}{l}} \right)^a}{\eta ^b}{r^c} $ ….. $ (1) $
$ \left[ V \right] = \left[ {{M^0}{L^3}{T^0}} \right] $
$ \left[ t \right] = \left[ {{M^0}{L^0}{T^1}} \right] $
$ \left[ p \right] = \dfrac{{\left[ {ML{T^{ - 2}}} \right]}}{{\left[ {{L^2}} \right]}} = \left[ {M{L^{ - 1}}{T^{ - 2}}} \right] $
$ \left[ l \right] = \left[ {{L^1}} \right] $
$ \left[ r \right] = \left[ {{L^1}} \right] $
$ \left[ \eta \right] = \dfrac{{force}}{{area \times velo.gradient}} $
$ \therefore \left[ \eta \right] = \dfrac{{\left[ {ML{T^{ - 2}}} \right]}}{{\left[ {{L^2}} \right]\left[ {{T^{ - 1}}} \right]}} = \left[ {M{L^{ - 1}}{T^{ - 1}}} \right] $
Thus, here we have written all the terms and their dimension now we have to put these values in equation $ (1) $ such that:
$ eq(1) \Rightarrow \dfrac{{\left[ {{M^0}{L^3}{T^0}} \right]}}{{\left[ {{M^0}{L^0}{T^1}} \right]}} = {\left[ {\dfrac{{\left[ {M{L^{ - 1}}{T^{ - 2}}} \right]}}{{\left[ {{L^1}} \right]}}} \right]^a}{\left[ {M{L^{ - 1}}{T^{ - 1}}} \right]^b}{\left[ {{L^1}} \right]^c} $
$ \Rightarrow \left[ {{M^0}{L^3}{T^{ - 1}}} \right] = \left[ {{M^{a + b + 0}}{L^{ - 2a - b + c}}{T^{ - 2a - b + 0}}} \right] $
Now here we have to compare the powers of $ [MLT] $ of right hand side with the powers of $ [MLT] $ of left hand side from above equation, so we get:
$ a + b + 0 = 0 $ ….. $ (i) $
$ - 2a - b + c = 3 $ ….. $ (ii) $
$ - 2a - b + 0 = - 1 $ ….. $ (iii) $
Now, we have to solve these equation $ (i) $ , $ (ii) $ and $ (iii) $ to obtain the required values of $ a,b\& c $
Therefore, consider equations $ (i) $ and $ (iii) $
$ \Rightarrow a + b = - 2a - b + 1 $
$ \Rightarrow a = 1 $
By using, $ a = 1 $ in equation $ (i) $ , we get
$ \Rightarrow 1 + b = 0 $
$ \Rightarrow b = - 1 $
Now, put $ a = 1 $ and $ b = - 1 $ in equation $ (ii) $ , the result is:
$ \Rightarrow - 2(1) + 1 + c = 3 $
$ \Rightarrow c = 4 $
Thus, we calculated the values of $ a = 1 $ , $ b = - 1 $ and $ c = 4 $
The correct answer is the option A.
Note :
Here, simply we have to write the dimensional formula of the given quantities in the formula in which we have to calculate the required values and then we have to put those values in that formula and compare them as we have done. Here we observed that the dimensional formula for $ k $ is not written; it is because here it has been mentioned that $ k $ is not having any dimension.
Where, $ V $ is the volume of water, $ r $ is the radius of the cylindrical pipe, $ l $ is the length, $ p $ is the pressure, $ t $ is the time and $ \eta $ is the viscosity.
Complete Step By Step Answer:
Let us first use the dimensional formulas of all the terms used in the given formula.
$ \dfrac{V}{t} = k{\left( {\dfrac{p}{l}} \right)^a}{\eta ^b}{r^c} $ ….. $ (1) $
$ \left[ V \right] = \left[ {{M^0}{L^3}{T^0}} \right] $
$ \left[ t \right] = \left[ {{M^0}{L^0}{T^1}} \right] $
$ \left[ p \right] = \dfrac{{\left[ {ML{T^{ - 2}}} \right]}}{{\left[ {{L^2}} \right]}} = \left[ {M{L^{ - 1}}{T^{ - 2}}} \right] $
$ \left[ l \right] = \left[ {{L^1}} \right] $
$ \left[ r \right] = \left[ {{L^1}} \right] $
$ \left[ \eta \right] = \dfrac{{force}}{{area \times velo.gradient}} $
$ \therefore \left[ \eta \right] = \dfrac{{\left[ {ML{T^{ - 2}}} \right]}}{{\left[ {{L^2}} \right]\left[ {{T^{ - 1}}} \right]}} = \left[ {M{L^{ - 1}}{T^{ - 1}}} \right] $
Thus, here we have written all the terms and their dimension now we have to put these values in equation $ (1) $ such that:
$ eq(1) \Rightarrow \dfrac{{\left[ {{M^0}{L^3}{T^0}} \right]}}{{\left[ {{M^0}{L^0}{T^1}} \right]}} = {\left[ {\dfrac{{\left[ {M{L^{ - 1}}{T^{ - 2}}} \right]}}{{\left[ {{L^1}} \right]}}} \right]^a}{\left[ {M{L^{ - 1}}{T^{ - 1}}} \right]^b}{\left[ {{L^1}} \right]^c} $
$ \Rightarrow \left[ {{M^0}{L^3}{T^{ - 1}}} \right] = \left[ {{M^{a + b + 0}}{L^{ - 2a - b + c}}{T^{ - 2a - b + 0}}} \right] $
Now here we have to compare the powers of $ [MLT] $ of right hand side with the powers of $ [MLT] $ of left hand side from above equation, so we get:
$ a + b + 0 = 0 $ ….. $ (i) $
$ - 2a - b + c = 3 $ ….. $ (ii) $
$ - 2a - b + 0 = - 1 $ ….. $ (iii) $
Now, we have to solve these equation $ (i) $ , $ (ii) $ and $ (iii) $ to obtain the required values of $ a,b\& c $
Therefore, consider equations $ (i) $ and $ (iii) $
$ \Rightarrow a + b = - 2a - b + 1 $
$ \Rightarrow a = 1 $
By using, $ a = 1 $ in equation $ (i) $ , we get
$ \Rightarrow 1 + b = 0 $
$ \Rightarrow b = - 1 $
Now, put $ a = 1 $ and $ b = - 1 $ in equation $ (ii) $ , the result is:
$ \Rightarrow - 2(1) + 1 + c = 3 $
$ \Rightarrow c = 4 $
Thus, we calculated the values of $ a = 1 $ , $ b = - 1 $ and $ c = 4 $
The correct answer is the option A.
Note :
Here, simply we have to write the dimensional formula of the given quantities in the formula in which we have to calculate the required values and then we have to put those values in that formula and compare them as we have done. Here we observed that the dimensional formula for $ k $ is not written; it is because here it has been mentioned that $ k $ is not having any dimension.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

