Answer
Verified
390.6k+ views
Hint :Here, it has been asked to find the values of $ a,b\& c $ from the formula given above. Thus we have to calculate with the help of dimensions of each term used in the formula $ \dfrac{V}{t} = k{\left( {\dfrac{p}{l}} \right)^a}{\eta ^b}{r^c} $
Where, $ V $ is the volume of water, $ r $ is the radius of the cylindrical pipe, $ l $ is the length, $ p $ is the pressure, $ t $ is the time and $ \eta $ is the viscosity.
Complete Step By Step Answer:
Let us first use the dimensional formulas of all the terms used in the given formula.
$ \dfrac{V}{t} = k{\left( {\dfrac{p}{l}} \right)^a}{\eta ^b}{r^c} $ ….. $ (1) $
$ \left[ V \right] = \left[ {{M^0}{L^3}{T^0}} \right] $
$ \left[ t \right] = \left[ {{M^0}{L^0}{T^1}} \right] $
$ \left[ p \right] = \dfrac{{\left[ {ML{T^{ - 2}}} \right]}}{{\left[ {{L^2}} \right]}} = \left[ {M{L^{ - 1}}{T^{ - 2}}} \right] $
$ \left[ l \right] = \left[ {{L^1}} \right] $
$ \left[ r \right] = \left[ {{L^1}} \right] $
$ \left[ \eta \right] = \dfrac{{force}}{{area \times velo.gradient}} $
$ \therefore \left[ \eta \right] = \dfrac{{\left[ {ML{T^{ - 2}}} \right]}}{{\left[ {{L^2}} \right]\left[ {{T^{ - 1}}} \right]}} = \left[ {M{L^{ - 1}}{T^{ - 1}}} \right] $
Thus, here we have written all the terms and their dimension now we have to put these values in equation $ (1) $ such that:
$ eq(1) \Rightarrow \dfrac{{\left[ {{M^0}{L^3}{T^0}} \right]}}{{\left[ {{M^0}{L^0}{T^1}} \right]}} = {\left[ {\dfrac{{\left[ {M{L^{ - 1}}{T^{ - 2}}} \right]}}{{\left[ {{L^1}} \right]}}} \right]^a}{\left[ {M{L^{ - 1}}{T^{ - 1}}} \right]^b}{\left[ {{L^1}} \right]^c} $
$ \Rightarrow \left[ {{M^0}{L^3}{T^{ - 1}}} \right] = \left[ {{M^{a + b + 0}}{L^{ - 2a - b + c}}{T^{ - 2a - b + 0}}} \right] $
Now here we have to compare the powers of $ [MLT] $ of right hand side with the powers of $ [MLT] $ of left hand side from above equation, so we get:
$ a + b + 0 = 0 $ ….. $ (i) $
$ - 2a - b + c = 3 $ ….. $ (ii) $
$ - 2a - b + 0 = - 1 $ ….. $ (iii) $
Now, we have to solve these equation $ (i) $ , $ (ii) $ and $ (iii) $ to obtain the required values of $ a,b\& c $
Therefore, consider equations $ (i) $ and $ (iii) $
$ \Rightarrow a + b = - 2a - b + 1 $
$ \Rightarrow a = 1 $
By using, $ a = 1 $ in equation $ (i) $ , we get
$ \Rightarrow 1 + b = 0 $
$ \Rightarrow b = - 1 $
Now, put $ a = 1 $ and $ b = - 1 $ in equation $ (ii) $ , the result is:
$ \Rightarrow - 2(1) + 1 + c = 3 $
$ \Rightarrow c = 4 $
Thus, we calculated the values of $ a = 1 $ , $ b = - 1 $ and $ c = 4 $
The correct answer is the option A.
Note :
Here, simply we have to write the dimensional formula of the given quantities in the formula in which we have to calculate the required values and then we have to put those values in that formula and compare them as we have done. Here we observed that the dimensional formula for $ k $ is not written; it is because here it has been mentioned that $ k $ is not having any dimension.
Where, $ V $ is the volume of water, $ r $ is the radius of the cylindrical pipe, $ l $ is the length, $ p $ is the pressure, $ t $ is the time and $ \eta $ is the viscosity.
Complete Step By Step Answer:
Let us first use the dimensional formulas of all the terms used in the given formula.
$ \dfrac{V}{t} = k{\left( {\dfrac{p}{l}} \right)^a}{\eta ^b}{r^c} $ ….. $ (1) $
$ \left[ V \right] = \left[ {{M^0}{L^3}{T^0}} \right] $
$ \left[ t \right] = \left[ {{M^0}{L^0}{T^1}} \right] $
$ \left[ p \right] = \dfrac{{\left[ {ML{T^{ - 2}}} \right]}}{{\left[ {{L^2}} \right]}} = \left[ {M{L^{ - 1}}{T^{ - 2}}} \right] $
$ \left[ l \right] = \left[ {{L^1}} \right] $
$ \left[ r \right] = \left[ {{L^1}} \right] $
$ \left[ \eta \right] = \dfrac{{force}}{{area \times velo.gradient}} $
$ \therefore \left[ \eta \right] = \dfrac{{\left[ {ML{T^{ - 2}}} \right]}}{{\left[ {{L^2}} \right]\left[ {{T^{ - 1}}} \right]}} = \left[ {M{L^{ - 1}}{T^{ - 1}}} \right] $
Thus, here we have written all the terms and their dimension now we have to put these values in equation $ (1) $ such that:
$ eq(1) \Rightarrow \dfrac{{\left[ {{M^0}{L^3}{T^0}} \right]}}{{\left[ {{M^0}{L^0}{T^1}} \right]}} = {\left[ {\dfrac{{\left[ {M{L^{ - 1}}{T^{ - 2}}} \right]}}{{\left[ {{L^1}} \right]}}} \right]^a}{\left[ {M{L^{ - 1}}{T^{ - 1}}} \right]^b}{\left[ {{L^1}} \right]^c} $
$ \Rightarrow \left[ {{M^0}{L^3}{T^{ - 1}}} \right] = \left[ {{M^{a + b + 0}}{L^{ - 2a - b + c}}{T^{ - 2a - b + 0}}} \right] $
Now here we have to compare the powers of $ [MLT] $ of right hand side with the powers of $ [MLT] $ of left hand side from above equation, so we get:
$ a + b + 0 = 0 $ ….. $ (i) $
$ - 2a - b + c = 3 $ ….. $ (ii) $
$ - 2a - b + 0 = - 1 $ ….. $ (iii) $
Now, we have to solve these equation $ (i) $ , $ (ii) $ and $ (iii) $ to obtain the required values of $ a,b\& c $
Therefore, consider equations $ (i) $ and $ (iii) $
$ \Rightarrow a + b = - 2a - b + 1 $
$ \Rightarrow a = 1 $
By using, $ a = 1 $ in equation $ (i) $ , we get
$ \Rightarrow 1 + b = 0 $
$ \Rightarrow b = - 1 $
Now, put $ a = 1 $ and $ b = - 1 $ in equation $ (ii) $ , the result is:
$ \Rightarrow - 2(1) + 1 + c = 3 $
$ \Rightarrow c = 4 $
Thus, we calculated the values of $ a = 1 $ , $ b = - 1 $ and $ c = 4 $
The correct answer is the option A.
Note :
Here, simply we have to write the dimensional formula of the given quantities in the formula in which we have to calculate the required values and then we have to put those values in that formula and compare them as we have done. Here we observed that the dimensional formula for $ k $ is not written; it is because here it has been mentioned that $ k $ is not having any dimension.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it