
Statement: If \[x = r\sin A\cos C,y = r\sin A\sin C\] and \[z = r\cos A\], the \[{r^2} = {x^2} + {y^2} + {z^2}\].
State whether the given statement is
A. True
B. False
Answer
592.5k+ views
Hint: In this question, first of all write the given data and substitute these values in the given equation. Then take the common terms and use the trigonometry formula to prove the statement is true. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given that \[x = r\sin A\cos C,y = r\sin A\sin C\] and \[z = r\cos A\]
Here we have to prove \[{r^2} = {x^2} + {y^2} + {z^2}\].
Now consider the value \[{x^2} + {y^2} + {z^2}\]
\[
\Rightarrow {x^2} + {y^2} + {z^2} = {\left( {r\sin A\cos C} \right)^2} + {\left( {r\sin A\sin C} \right)^2} + {\left( {r\cos A} \right)^2} \\
\Rightarrow {x^2} + {y^2} + {z^2} = {r^2}{\sin ^2}A{\cos ^2}C + {r^2}{\sin ^2}A{\sin ^2}C + {r^2}{\cos ^2}A \\
\]
Taking the terms common and using the formula \[{\sin ^2}x + {\cos ^2}x = 1\], we get
\[
\Rightarrow {x^2} + {y^2} + {z^2} = {r^2}{\sin ^2}A\left( {{{\cos }^2}C + {{\sin }^2}C} \right) + {r^2}{\cos ^2}A \\
\Rightarrow {x^2} + {y^2} + {z^2} = {r^2}{\sin ^2}A\left( 1 \right) + {r^2}{\cos ^2}A{\text{ }}\left[ {\because {{\sin }^2}x + {{\cos }^2}x = 1} \right] \\
\Rightarrow {x^2} + {y^2} + {z^2} = {r^2}{\sin ^2}A + {r^2}{\cos ^2}A \\
\]
Again, taking the terms common and using the formula \[{\sin ^2}x + {\cos ^2}x = 1\], we get
\[
\Rightarrow {x^2} + {y^2} + {z^2} = {r^2}\left( {{{\sin }^2}A + {{\cos }^2}A} \right) \\
\Rightarrow {x^2} + {y^2} + {z^2} = {r^2}{\text{ }}\left[ {\because {{\sin }^2}A + {{\cos }^2}A = 1} \right] \\
\therefore {x^2} + {y^2} + {z^2} = {r^2} \\
\]
Hence proved that \[{x^2} + {y^2} + {z^2} = {r^2}\]
Therefore, the given statement is true
Thus, the correct option is A. True
Note: Here we have used the formula \[{\sin ^2}x + {\cos ^2}x = 1\]. To solve these kinds of problems, substitute the given values in the equation and find whether it satisfies or not. If it satisfies then the given statement is true otherwise false.
Complete step-by-step answer:
Given that \[x = r\sin A\cos C,y = r\sin A\sin C\] and \[z = r\cos A\]
Here we have to prove \[{r^2} = {x^2} + {y^2} + {z^2}\].
Now consider the value \[{x^2} + {y^2} + {z^2}\]
\[
\Rightarrow {x^2} + {y^2} + {z^2} = {\left( {r\sin A\cos C} \right)^2} + {\left( {r\sin A\sin C} \right)^2} + {\left( {r\cos A} \right)^2} \\
\Rightarrow {x^2} + {y^2} + {z^2} = {r^2}{\sin ^2}A{\cos ^2}C + {r^2}{\sin ^2}A{\sin ^2}C + {r^2}{\cos ^2}A \\
\]
Taking the terms common and using the formula \[{\sin ^2}x + {\cos ^2}x = 1\], we get
\[
\Rightarrow {x^2} + {y^2} + {z^2} = {r^2}{\sin ^2}A\left( {{{\cos }^2}C + {{\sin }^2}C} \right) + {r^2}{\cos ^2}A \\
\Rightarrow {x^2} + {y^2} + {z^2} = {r^2}{\sin ^2}A\left( 1 \right) + {r^2}{\cos ^2}A{\text{ }}\left[ {\because {{\sin }^2}x + {{\cos }^2}x = 1} \right] \\
\Rightarrow {x^2} + {y^2} + {z^2} = {r^2}{\sin ^2}A + {r^2}{\cos ^2}A \\
\]
Again, taking the terms common and using the formula \[{\sin ^2}x + {\cos ^2}x = 1\], we get
\[
\Rightarrow {x^2} + {y^2} + {z^2} = {r^2}\left( {{{\sin }^2}A + {{\cos }^2}A} \right) \\
\Rightarrow {x^2} + {y^2} + {z^2} = {r^2}{\text{ }}\left[ {\because {{\sin }^2}A + {{\cos }^2}A = 1} \right] \\
\therefore {x^2} + {y^2} + {z^2} = {r^2} \\
\]
Hence proved that \[{x^2} + {y^2} + {z^2} = {r^2}\]
Therefore, the given statement is true
Thus, the correct option is A. True
Note: Here we have used the formula \[{\sin ^2}x + {\cos ^2}x = 1\]. To solve these kinds of problems, substitute the given values in the equation and find whether it satisfies or not. If it satisfies then the given statement is true otherwise false.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

