
Statement – 1: The sum of the series 1 + (1 + 2 + 4) + (4 + 6 + 9) + (9 + 12 + 16) + ...... + (361 + 380 + 400) is 8000.
Statement – 2: $\sum\limits_{k = 1}^n {\left( {{k^3} - {{\left( {k - 1} \right)}^3}} \right)} = {n^3}$, for any natural number n.
$\left( a \right)$ Statement 1 is false, statement 2 is true.
$\left( b \right)$ Statement 1 is true, statement 2 is true. Statement 2 is a correct explanation for statement 1.
$\left( c \right)$ Statement 1 is true, statement 2 is true. Statement 2 is not a correct explanation for statement 1.
$\left( d \right)$ Statement 1 is true, statement 2 is false.
Answer
513.3k+ views
Hint: In this particular question use the concept of expanding the summation, after expanding check which terms are cancel out and which are not, the terms which are not cancel out is the solution for the statement 2, later on in the solution use the concept of $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Statement – 2: $\sum\limits_{k = 1}^n {\left( {{k^3} - {{\left( {k - 1} \right)}^3}} \right)} = {n^3}$, for any natural number n.
Consider the LHS of the above equation we have,
$ \Rightarrow \sum\limits_{k = 1}^n {\left( {{k^3} - {{\left( {k - 1} \right)}^3}} \right)} $
Now expand this summation we have,
$ \Rightarrow \left( {{1^3} - {{\left( {1 - 1} \right)}^3}} \right) + \left( {{2^3} - {{\left( {2 - 1} \right)}^3}} \right) + \left( {{3^3} - {{\left( {3 - 1} \right)}^3}} \right) + ...... + \left( {{{\left( {n - 1} \right)}^3} - {{\left( {\left( {n - 1} \right) - 1} \right)}^3}} \right) + \left( {{n^3} - {{\left( {n - 1} \right)}^3}} \right)$....................... (1)
Now simplify this we have,
$ \Rightarrow {1^3} - {\left( 0 \right)^3} + {2^3} - {\left( 1 \right)^3} + {3^3} - {\left( 2 \right)^3} + ...... + {\left( {n - 1} \right)^3} - {\left( {n - 2} \right)^3} + {n^3} - {\left( {n - 1} \right)^3}$
So as we see that all the terms of the above series are canceled except ${n^3}$.
$ \Rightarrow \sum\limits_{k = 1}^n {\left( {{k^3} - {{\left( {k - 1} \right)}^3}} \right)} = {n^3}$
= RHS
So statement 2 is the correct answer.
Statement – 1: The sum of the series 1 + (1 + 2 + 4) + (4 + 6 + 9) + (9 + 12 + 16) + ...... + (361 + 380 + 400) is 8000.
Consider the LHS of the above equation we have,
1 + (1 + 2 + 4) + (4 + 6 + 9) + (9 + 12 + 16) + ...... + (361 + 380 + 400)
Now in equation (1) substitute n = 20 we have
$ \Rightarrow \left( {{1^3} - {{\left( {1 - 1} \right)}^3}} \right) + \left( {{2^3} - {{\left( {2 - 1} \right)}^3}} \right) + \left( {{3^3} - {{\left( {3 - 1} \right)}^3}} \right) + \left( {{4^3} - {{\left( {4 - 1} \right)}^3}} \right) + ...... + \left( {{{\left( {20} \right)}^3} - {{\left( {20 - 1} \right)}^3}} \right)$
And this value is equal to ${n^3}$ according to statement 2 so we have,
$ \Rightarrow \left( {{1^3} - {{\left( {1 - 1} \right)}^3}} \right) + \left( {{2^3} - {{\left( {2 - 1} \right)}^3}} \right) + \left( {{3^3} - {{\left( {3 - 1} \right)}^3}} \right) + \left( {{4^3} - {{\left( {4 - 1} \right)}^3}} \right) + ...... + \left( {{{\left( {20} \right)}^3} - {{\left( {20 - 1} \right)}^3}} \right) = {\left( {20} \right)^3}$
$ \Rightarrow \left( {{1^3} - {{\left( {1 - 1} \right)}^3}} \right) + \left( {{2^3} - {{\left( {2 - 1} \right)}^3}} \right) + \left( {{3^3} - {{\left( {3 - 1} \right)}^3}} \right) + ...... + \left( {{{\left( {20} \right)}^3} - {{\left( {20 - 1} \right)}^3}} \right) = {\left( {20} \right)^3}$
$ \Rightarrow \left( {{1^3} - {{\left( 0 \right)}^3}} \right) + \left( {{2^3} - {{\left( 1 \right)}^3}} \right) + \left( {{3^3} - {{\left( 2 \right)}^3}} \right) + \left( {{4^3} - {{\left( 3 \right)}^3}} \right)...... + \left( {{{\left( {20} \right)}^3} - {{\left( {19} \right)}^3}} \right) = {\left( {20} \right)^3}$
$ \Rightarrow 1 + \left( {{2^3} - {{\left( 1 \right)}^3}} \right) + \left( {{3^3} - {{\left( 2 \right)}^3}} \right) + \left( {{4^3} - {{\left( 3 \right)}^3}} \right)...... + \left( {{{\left( {20} \right)}^3} - {{\left( {19} \right)}^3}} \right) = {\left( {20} \right)^3}$
Now as we know that $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$ so in this property in the above equation we have,
$ \Rightarrow 1 + \left( {2 - 1} \right)\left( {{2^2} + {1^2} + 2} \right) + \left( {3 - 2} \right)\left( {{3^2} + {2^2} + 6} \right) + \left( {4 - 3} \right)\left( {{4^2} + {3^2} + 12} \right)...... + \left( {20 - 19} \right)\left( {{{20}^2} + {{19}^2} + 20\left( {19} \right)} \right) = {\left( {20} \right)^3}$
Now simplify we have,
$ \Rightarrow 1 + \left( {4 + 1 + 2} \right) + \left( {9 + 4 + 6} \right) + \left( {16 + 9 + 12} \right)...... + \left( {400 + 361 + 384} \right) = {\left( {20} \right)^3}$
$ \Rightarrow 1 + \left( {1 + 2 + 4} \right) + \left( {4 + 6 + 9} \right) + \left( {9 + 12 + 16} \right)...... + \left( {361 + 384 + 400} \right) = 8000$
= RHS
So statement 1 is also correct, and statement 2 is a correct explanation for statement 1.
Hence option (b) is the correct answer.
Note: In such types of questions it is advised to simplify the LHS or the RHS according to their complexity of given functions. Sometimes proving LHS = RHS needs simplification on both sides of the equation. Remember to convert dissimilar functions to get to the final result, and check whether R.H.S is equal to L.H.S or not if yes then it is the required answer, and also check whether statement 2 is used to simplify the statement 1, if yes then both are true and statement 2 is a correct explanation for statement 1.
Complete step-by-step answer:
Statement – 2: $\sum\limits_{k = 1}^n {\left( {{k^3} - {{\left( {k - 1} \right)}^3}} \right)} = {n^3}$, for any natural number n.
Consider the LHS of the above equation we have,
$ \Rightarrow \sum\limits_{k = 1}^n {\left( {{k^3} - {{\left( {k - 1} \right)}^3}} \right)} $
Now expand this summation we have,
$ \Rightarrow \left( {{1^3} - {{\left( {1 - 1} \right)}^3}} \right) + \left( {{2^3} - {{\left( {2 - 1} \right)}^3}} \right) + \left( {{3^3} - {{\left( {3 - 1} \right)}^3}} \right) + ...... + \left( {{{\left( {n - 1} \right)}^3} - {{\left( {\left( {n - 1} \right) - 1} \right)}^3}} \right) + \left( {{n^3} - {{\left( {n - 1} \right)}^3}} \right)$....................... (1)
Now simplify this we have,
$ \Rightarrow {1^3} - {\left( 0 \right)^3} + {2^3} - {\left( 1 \right)^3} + {3^3} - {\left( 2 \right)^3} + ...... + {\left( {n - 1} \right)^3} - {\left( {n - 2} \right)^3} + {n^3} - {\left( {n - 1} \right)^3}$
So as we see that all the terms of the above series are canceled except ${n^3}$.
$ \Rightarrow \sum\limits_{k = 1}^n {\left( {{k^3} - {{\left( {k - 1} \right)}^3}} \right)} = {n^3}$
= RHS
So statement 2 is the correct answer.
Statement – 1: The sum of the series 1 + (1 + 2 + 4) + (4 + 6 + 9) + (9 + 12 + 16) + ...... + (361 + 380 + 400) is 8000.
Consider the LHS of the above equation we have,
1 + (1 + 2 + 4) + (4 + 6 + 9) + (9 + 12 + 16) + ...... + (361 + 380 + 400)
Now in equation (1) substitute n = 20 we have
$ \Rightarrow \left( {{1^3} - {{\left( {1 - 1} \right)}^3}} \right) + \left( {{2^3} - {{\left( {2 - 1} \right)}^3}} \right) + \left( {{3^3} - {{\left( {3 - 1} \right)}^3}} \right) + \left( {{4^3} - {{\left( {4 - 1} \right)}^3}} \right) + ...... + \left( {{{\left( {20} \right)}^3} - {{\left( {20 - 1} \right)}^3}} \right)$
And this value is equal to ${n^3}$ according to statement 2 so we have,
$ \Rightarrow \left( {{1^3} - {{\left( {1 - 1} \right)}^3}} \right) + \left( {{2^3} - {{\left( {2 - 1} \right)}^3}} \right) + \left( {{3^3} - {{\left( {3 - 1} \right)}^3}} \right) + \left( {{4^3} - {{\left( {4 - 1} \right)}^3}} \right) + ...... + \left( {{{\left( {20} \right)}^3} - {{\left( {20 - 1} \right)}^3}} \right) = {\left( {20} \right)^3}$
$ \Rightarrow \left( {{1^3} - {{\left( {1 - 1} \right)}^3}} \right) + \left( {{2^3} - {{\left( {2 - 1} \right)}^3}} \right) + \left( {{3^3} - {{\left( {3 - 1} \right)}^3}} \right) + ...... + \left( {{{\left( {20} \right)}^3} - {{\left( {20 - 1} \right)}^3}} \right) = {\left( {20} \right)^3}$
$ \Rightarrow \left( {{1^3} - {{\left( 0 \right)}^3}} \right) + \left( {{2^3} - {{\left( 1 \right)}^3}} \right) + \left( {{3^3} - {{\left( 2 \right)}^3}} \right) + \left( {{4^3} - {{\left( 3 \right)}^3}} \right)...... + \left( {{{\left( {20} \right)}^3} - {{\left( {19} \right)}^3}} \right) = {\left( {20} \right)^3}$
$ \Rightarrow 1 + \left( {{2^3} - {{\left( 1 \right)}^3}} \right) + \left( {{3^3} - {{\left( 2 \right)}^3}} \right) + \left( {{4^3} - {{\left( 3 \right)}^3}} \right)...... + \left( {{{\left( {20} \right)}^3} - {{\left( {19} \right)}^3}} \right) = {\left( {20} \right)^3}$
Now as we know that $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$ so in this property in the above equation we have,
$ \Rightarrow 1 + \left( {2 - 1} \right)\left( {{2^2} + {1^2} + 2} \right) + \left( {3 - 2} \right)\left( {{3^2} + {2^2} + 6} \right) + \left( {4 - 3} \right)\left( {{4^2} + {3^2} + 12} \right)...... + \left( {20 - 19} \right)\left( {{{20}^2} + {{19}^2} + 20\left( {19} \right)} \right) = {\left( {20} \right)^3}$
Now simplify we have,
$ \Rightarrow 1 + \left( {4 + 1 + 2} \right) + \left( {9 + 4 + 6} \right) + \left( {16 + 9 + 12} \right)...... + \left( {400 + 361 + 384} \right) = {\left( {20} \right)^3}$
$ \Rightarrow 1 + \left( {1 + 2 + 4} \right) + \left( {4 + 6 + 9} \right) + \left( {9 + 12 + 16} \right)...... + \left( {361 + 384 + 400} \right) = 8000$
= RHS
So statement 1 is also correct, and statement 2 is a correct explanation for statement 1.
Hence option (b) is the correct answer.
Note: In such types of questions it is advised to simplify the LHS or the RHS according to their complexity of given functions. Sometimes proving LHS = RHS needs simplification on both sides of the equation. Remember to convert dissimilar functions to get to the final result, and check whether R.H.S is equal to L.H.S or not if yes then it is the required answer, and also check whether statement 2 is used to simplify the statement 1, if yes then both are true and statement 2 is a correct explanation for statement 1.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
