
State whether the two lines through (6,3) and (1,1) and through (-2,5) and (2,-5) are parallel, perpendicular or neither.
Answer
510.9k+ views
Hint: Find the slope of the lines using the property that the slope of the line joining the points $A\left( {{x}_{1}},{{y}_{1}} \right)$ and $B\left( {{x}_{2}},{{y}_{2}} \right)$ is given by $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$. Use the fact that if the slopes of two lines are equal, then they are parallel to each other and if the product of the slopes of two lines is -1, then the lines are perpendicular. Hence determine whether the lines are parallel or perpendicular or neither.
Complete step-by-step answer:
Finding the slope of the line joining (6,3) and (1,1):
We know that the slope of the line joining the points $A\left( {{x}_{1}},{{y}_{1}} \right)$ and $B\left( {{x}_{2}},{{y}_{2}} \right)$ is given by $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$.
Here ${{x}_{1}}=6,{{x}_{2}}=1,{{y}_{1}}=3$ and ${{y}_{2}}=1$
Hence the slope of the line is $m=\dfrac{1-3}{1-6}=\dfrac{-2}{-5}=\dfrac{2}{5}$
Finding the slope of the line joining (-2,5) and (2,-5):
We know that the slope of the line joining the points $A\left( {{x}_{1}},{{y}_{1}} \right)$ and $B\left( {{x}_{2}},{{y}_{2}} \right)$ is given by $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$.
Here ${{x}_{1}}=-2,{{x}_{2}}=2,{{y}_{1}}=5$ and ${{y}_{2}}=-5$
Hence the slope of the line is $m=\dfrac{-5-5}{2-\left( -2 \right)}=\dfrac{-10}{4}=\dfrac{-5}{2}$
Product of slope of the lines $=\dfrac{2}{5}\times \dfrac{-5}{2}=-1$
Now since the product of the slopes of the two lines is -1, the lines are perpendicular to each other.
Note: [i] Viewing graphically:
As is evident from the graph $AB\bot CD$
[ii] Alternative solution:
Let the equation of AB be y=mx+c
Since the line passes through (6,3), we have
$6m+c=3$
Also, since the line passes through (1,1), we have
$m+c=1$
Hence, we have
$6m-m=3-1\Rightarrow m=\dfrac{2}{5}$
Hence the slope of AB is $\dfrac{2}{5}$
Let the equation of CD be y = mx+c
Since the line passes through (-2,5), we have
$-2m+c=5$
Also, since the line passes through (2,-5), we have
$2m+c=-5$
Hence, we have
$2m+2m=-5-5\Rightarrow m=\dfrac{-5}{2}$
Hence the slope of CD is $\dfrac{-5}{2}$
Hence the lines are perpendicular to each other.
Complete step-by-step answer:
Finding the slope of the line joining (6,3) and (1,1):
We know that the slope of the line joining the points $A\left( {{x}_{1}},{{y}_{1}} \right)$ and $B\left( {{x}_{2}},{{y}_{2}} \right)$ is given by $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$.
Here ${{x}_{1}}=6,{{x}_{2}}=1,{{y}_{1}}=3$ and ${{y}_{2}}=1$
Hence the slope of the line is $m=\dfrac{1-3}{1-6}=\dfrac{-2}{-5}=\dfrac{2}{5}$
Finding the slope of the line joining (-2,5) and (2,-5):
We know that the slope of the line joining the points $A\left( {{x}_{1}},{{y}_{1}} \right)$ and $B\left( {{x}_{2}},{{y}_{2}} \right)$ is given by $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$.
Here ${{x}_{1}}=-2,{{x}_{2}}=2,{{y}_{1}}=5$ and ${{y}_{2}}=-5$
Hence the slope of the line is $m=\dfrac{-5-5}{2-\left( -2 \right)}=\dfrac{-10}{4}=\dfrac{-5}{2}$
Product of slope of the lines $=\dfrac{2}{5}\times \dfrac{-5}{2}=-1$
Now since the product of the slopes of the two lines is -1, the lines are perpendicular to each other.
Note: [i] Viewing graphically:

As is evident from the graph $AB\bot CD$
[ii] Alternative solution:
Let the equation of AB be y=mx+c
Since the line passes through (6,3), we have
$6m+c=3$
Also, since the line passes through (1,1), we have
$m+c=1$
Hence, we have
$6m-m=3-1\Rightarrow m=\dfrac{2}{5}$
Hence the slope of AB is $\dfrac{2}{5}$
Let the equation of CD be y = mx+c
Since the line passes through (-2,5), we have
$-2m+c=5$
Also, since the line passes through (2,-5), we have
$2m+c=-5$
Hence, we have
$2m+2m=-5-5\Rightarrow m=\dfrac{-5}{2}$
Hence the slope of CD is $\dfrac{-5}{2}$
Hence the lines are perpendicular to each other.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE

Describe the effects of the Second World War class 11 social science CBSE
