
State True or False:
${\sin ^{ - 1}}\sqrt {2 - x} = {\cos ^{ - 1}}\sqrt {x - 1} $ holds for all real x.
a) True
b) False
Answer
600.3k+ views
Hint: In order to solve the problem convert both of the inverse trigonometric functions into one function by using inverse trigonometric identities. Then simplify the terms in order to convert the functions in some comparable constants.
Complete step-by-step answer:
Given equation is: ${\sin ^{ - 1}}\sqrt {2 - x} = {\cos ^{ - 1}}\sqrt {x - 1} $
First we will convert ${\cos ^{ - 1}}{\text{ into }}{\sin ^{ - 1}}$
As we know that:
$
{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2} \\
\Rightarrow {\cos ^{ - 1}}\theta = \dfrac{\pi }{2} - {\sin ^{ - 1}}\theta \\
$
So using the above formula to modify the given equation
$
\Rightarrow {\sin ^{ - 1}}\sqrt {2 - x} = {\cos ^{ - 1}}\sqrt {x - 1} \\
\Rightarrow {\sin ^{ - 1}}\sqrt {2 - x} = \dfrac{\pi }{2} - {\sin ^{ - 1}}\sqrt {x - 1} \\
\Rightarrow {\sin ^{ - 1}}\sqrt {2 - x} + {\sin ^{ - 1}}\sqrt {x - 1} = \dfrac{\pi }{2} \\
$
Now let us use inverse trigonometric identity for sum of inverse sine angle which is given as:
$ \Rightarrow {\sin ^{ - 1}}A + {\sin ^{ - 1}}B = {\sin ^{ - 1}}\left( {A\sqrt {1 - {B^2}} + B\sqrt {1 - {A^2}} } \right)$
Using the above formula we get
$
\because {\sin ^{ - 1}}\left( {\sqrt {2 - x} } \right) + {\sin ^{ - 1}}\left( {\sqrt {x - 1} } \right) = \dfrac{\pi }{2} \\
\Rightarrow {\sin ^{ - 1}}\left( {\left( {\sqrt {2 - x} } \right)\sqrt {1 - {{\left( {\sqrt {x - 1} } \right)}^2}} + \left( {\sqrt {x - 1} } \right)\sqrt {1 - {{\left( {\sqrt {2 - x} } \right)}^2}} } \right) = \dfrac{\pi }{2} \\
$
Now let us bring the ${\sin ^{ - 1}}$ from LHS to RHS in the form of $\sin $ to find the constant value of LHS
$ \Rightarrow \left( {\left( {\sqrt {2 - x} } \right)\sqrt {1 - {{\left( {\sqrt {x - 1} } \right)}^2}} + \left( {\sqrt {x - 1} } \right)\sqrt {1 - {{\left( {\sqrt {2 - x} } \right)}^2}} } \right) = \sin \left( {\dfrac{\pi }{2}} \right)$
Let us simplify further to find the constant value of LHS by putting the value of RHS.
\[
\Rightarrow \left( {\left( {\sqrt {2 - x} } \right)\sqrt {1 - \left( {x - 1} \right)} + \left( {\sqrt {x - 1} } \right)\sqrt {1 - \left( {2 - x} \right)} } \right) = 1{\text{ }}\left[ {\because \sin \left( {\dfrac{\pi }{2}} \right) = 1} \right] \\
\Rightarrow \left( {\left( {\sqrt {2 - x} } \right)\left( {\sqrt {2 - x} } \right) + \left( {\sqrt {x - 1} } \right)\left( {\sqrt {x - 1} } \right)} \right) = 1 \\
\Rightarrow \left( {\left( {2 - x} \right) + \left( {x - 1} \right)} \right) = 1 \\
\Rightarrow \left( {2 - x + x - 1} \right) = 1 \\
\Rightarrow \left( {2 - x + x - 1} \right) = 1 \\
\Rightarrow 1 = 1 \\
\]
As by solving the LHS and the RHS we have got the final value of LHS equal to RHS. So the equation always holds true.
Hence, the equation ${\sin ^{ - 1}}\sqrt {2 - x} = {\cos ^{ - 1}}\sqrt {x - 1} $ holds true for all the real value of x.
So, option A is the correct option.
Note: In order to solve such types of problems students must remember the identities for inverse trigonometry. For such problems where we need to prove the relation exists for all the real values the best way to proceed is to prove the LHS and RHS as constant and equal. The values of trigonometric terms for some common angles must be remembered.
Complete step-by-step answer:
Given equation is: ${\sin ^{ - 1}}\sqrt {2 - x} = {\cos ^{ - 1}}\sqrt {x - 1} $
First we will convert ${\cos ^{ - 1}}{\text{ into }}{\sin ^{ - 1}}$
As we know that:
$
{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2} \\
\Rightarrow {\cos ^{ - 1}}\theta = \dfrac{\pi }{2} - {\sin ^{ - 1}}\theta \\
$
So using the above formula to modify the given equation
$
\Rightarrow {\sin ^{ - 1}}\sqrt {2 - x} = {\cos ^{ - 1}}\sqrt {x - 1} \\
\Rightarrow {\sin ^{ - 1}}\sqrt {2 - x} = \dfrac{\pi }{2} - {\sin ^{ - 1}}\sqrt {x - 1} \\
\Rightarrow {\sin ^{ - 1}}\sqrt {2 - x} + {\sin ^{ - 1}}\sqrt {x - 1} = \dfrac{\pi }{2} \\
$
Now let us use inverse trigonometric identity for sum of inverse sine angle which is given as:
$ \Rightarrow {\sin ^{ - 1}}A + {\sin ^{ - 1}}B = {\sin ^{ - 1}}\left( {A\sqrt {1 - {B^2}} + B\sqrt {1 - {A^2}} } \right)$
Using the above formula we get
$
\because {\sin ^{ - 1}}\left( {\sqrt {2 - x} } \right) + {\sin ^{ - 1}}\left( {\sqrt {x - 1} } \right) = \dfrac{\pi }{2} \\
\Rightarrow {\sin ^{ - 1}}\left( {\left( {\sqrt {2 - x} } \right)\sqrt {1 - {{\left( {\sqrt {x - 1} } \right)}^2}} + \left( {\sqrt {x - 1} } \right)\sqrt {1 - {{\left( {\sqrt {2 - x} } \right)}^2}} } \right) = \dfrac{\pi }{2} \\
$
Now let us bring the ${\sin ^{ - 1}}$ from LHS to RHS in the form of $\sin $ to find the constant value of LHS
$ \Rightarrow \left( {\left( {\sqrt {2 - x} } \right)\sqrt {1 - {{\left( {\sqrt {x - 1} } \right)}^2}} + \left( {\sqrt {x - 1} } \right)\sqrt {1 - {{\left( {\sqrt {2 - x} } \right)}^2}} } \right) = \sin \left( {\dfrac{\pi }{2}} \right)$
Let us simplify further to find the constant value of LHS by putting the value of RHS.
\[
\Rightarrow \left( {\left( {\sqrt {2 - x} } \right)\sqrt {1 - \left( {x - 1} \right)} + \left( {\sqrt {x - 1} } \right)\sqrt {1 - \left( {2 - x} \right)} } \right) = 1{\text{ }}\left[ {\because \sin \left( {\dfrac{\pi }{2}} \right) = 1} \right] \\
\Rightarrow \left( {\left( {\sqrt {2 - x} } \right)\left( {\sqrt {2 - x} } \right) + \left( {\sqrt {x - 1} } \right)\left( {\sqrt {x - 1} } \right)} \right) = 1 \\
\Rightarrow \left( {\left( {2 - x} \right) + \left( {x - 1} \right)} \right) = 1 \\
\Rightarrow \left( {2 - x + x - 1} \right) = 1 \\
\Rightarrow \left( {2 - x + x - 1} \right) = 1 \\
\Rightarrow 1 = 1 \\
\]
As by solving the LHS and the RHS we have got the final value of LHS equal to RHS. So the equation always holds true.
Hence, the equation ${\sin ^{ - 1}}\sqrt {2 - x} = {\cos ^{ - 1}}\sqrt {x - 1} $ holds true for all the real value of x.
So, option A is the correct option.
Note: In order to solve such types of problems students must remember the identities for inverse trigonometry. For such problems where we need to prove the relation exists for all the real values the best way to proceed is to prove the LHS and RHS as constant and equal. The values of trigonometric terms for some common angles must be remembered.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

