
State Newton’s formula for the velocity of sound in a gas. What is Laplace’s correction?
Answer
493.8k+ views
Hint:
-Newton formulated the velocity of sound in gas by assuming that the sound wave going through the gas medium in the isothermal process. That means in the time of propagation of the sound the pressure and the volume of many parts of the gas medium can be changed due to the compression and rarefaction but the temperature of the medium remains constant.
-Laplace corrected the assumption of Newton by telling that in the time of propagation of the sound the temperature can not be constant. So, the propagation of sound in the gas medium is an adiabatic process.
Complete step by step answer:
Newton’s Calculation: The velocity of sound that propagates in a gas medium was first formulated by Newton.
He stated the formula of the velocity of the propagation of sound in a gas medium by assuming that the sound wave going through the gas medium in the isothermal process.
In the time of propagation of the sound, the pressure and the volume of many parts of the gas medium can be changed due to the compression and rarefaction but the temperature of the medium remains constant.
Let us consider, for a part of the gas a certain amount of pressure is and volume is . During the propagation of the sound, the pressure becomes by increasing and hence the volume becomes by decreasing.
Since the temperature is constant, from Boyle's law,
On multiplying the term and we get,
[The term is too small and hence neglected]
On rewriting the terms and we get,
We know, if the sound propagating in a gas medium of density and bulk modulus , the velocity of sound is,
So, from Newton’s calculation, we get, .
Laplace’s Correction: Laplace first told that during the propagation of sound in the gas medium the temperature does not constant. The assumption of Newton of the isothermal process is not right.
Laplace assumed that during the compression and rarefaction the expansion and compression of the layers are so fast to keep the temperature constant. Hence the process should be the adiabatic process instead of the isothermal process.
In the adiabatic process, if a part of the gas has a certain amount of pressure is and volume is ,
.
Hence, During the propagation of the sound, if the pressure becomes by increasing and hence the volume becomes by decreasing.
[ for Binomial expansion the other terms are neglected]
[The term is too small and hence neglected]
So, from Laplace's Correction we get, .
Note:
-From Newton’s calculation, we get, .
-From Laplace's Correction we get, .
-Newton formulated the velocity of sound in gas by assuming that the sound wave going through the gas medium in the isothermal process. That means in the time of propagation of the sound the pressure and the volume of many parts of the gas medium can be changed due to the compression and rarefaction but the temperature of the medium remains constant.
-Laplace corrected the assumption of Newton by telling that in the time of propagation of the sound the temperature can not be constant. So, the propagation of sound in the gas medium is an adiabatic process.
Complete step by step answer:
Newton’s Calculation: The velocity of sound that propagates in a gas medium was first formulated by Newton.
He stated the formula of the velocity of the propagation of sound in a gas medium by assuming that the sound wave going through the gas medium in the isothermal process.
In the time of propagation of the sound, the pressure and the volume of many parts of the gas medium can be changed due to the compression and rarefaction but the temperature of the medium remains constant.
Let us consider, for a part of the gas a certain amount of pressure is
Since the temperature is constant, from Boyle's law,
On multiplying the term and we get,
On rewriting the terms and we get,
We know, if the sound propagating in a gas medium of density
So, from Newton’s calculation, we get,
Laplace’s Correction: Laplace first told that during the propagation of sound in the gas medium the temperature does not constant. The assumption of Newton of the isothermal process is not right.
Laplace assumed that during the compression and rarefaction the expansion and compression of the layers are so fast to keep the temperature constant. Hence the process should be the adiabatic process instead of the isothermal process.
In the adiabatic process, if a part of the gas has a certain amount of pressure is
Hence, During the propagation of the sound, if the pressure becomes
So, from Laplace's Correction we get,
Note:
-From Newton’s calculation, we get,
Now for STP, the value of the velocity will be . But the value obtained from many experiments is .
-From Laplace's Correction we get,
Now for STP, the value of the velocity will be . This value is very much nearer to the experimental value(i.e. ).
Latest Vedantu courses for you
Grade 8 | CBSE | SCHOOL | English
Vedantu 8 CBSE Pro Course - (2025-26)
School Full course for CBSE students
₹45,300 per year
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
How many moles and how many grams of NaCl are present class 11 chemistry CBSE

How do I get the molar mass of urea class 11 chemistry CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

Plants which grow in shade are called A Sciophytes class 11 biology CBSE

A renewable exhaustible natural resource is A Petroleum class 11 biology CBSE

In which of the following gametophytes is not independent class 11 biology CBSE
