Answer
Verified
411.6k+ views
Hint: Since this is a question related to probability, so there is occurrence of events say two events and this theorem involves addition on them. Probability of an event is the number of ways events can occur divided by the total number of possible outcomes.
Complete step-by-step answer:
Statement of the addition theorem on probability:
If A and B are any two events of a random experiment and P is a probability function then the probability of happening of at least one of the events is defined as $P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)$.
Now, we have to prove the Addition theorem of probability.
Given: A and B are any two events of a random experiment.
To prove: $P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)$.
Proof:
From the set theory we know that
$n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)$.
Suppose $n\left( S \right)$ denote the total number of the possible events of random experiment and then dividing both left hand side and right hand side of the of the above equation we get,
\[\dfrac{{P\left( {A \cup B} \right)}}{{n\left( S \right)}} = \dfrac{{P\left( A \right)}}{{n\left( S \right)}} + \dfrac{{P\left( B \right)}}{{n\left( S \right)}} - \dfrac{{P\left( {A \cap B} \right)}}{{n\left( S \right)}}\]
Now, we know that a formula for probability $P\left( x \right) = \dfrac{{n\left( x \right)}}{{n\left( S \right)}}$. By applying this we can write
\[P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)\].
Hence, the above given addition theorem of probability is proved.
Note:
Special case: If two events A and B are mutually exclusive, then $A \cap B$ is a null set. That is $n\left( {A \cap B} \right) = 0$ So, the probability of happening of at least one of the events is equal to the probability of happening of event A and the probability of happening of event B. Mathematically it is written as $P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)$. \[\] Two events A and B are independent events if the equation \[P\left( {A \cap B} \right) = P\left( A \right) \times P\left( B \right)\] holds true.
Complete step-by-step answer:
Statement of the addition theorem on probability:
If A and B are any two events of a random experiment and P is a probability function then the probability of happening of at least one of the events is defined as $P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)$.
Now, we have to prove the Addition theorem of probability.
Given: A and B are any two events of a random experiment.
To prove: $P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)$.
Proof:
From the set theory we know that
$n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)$.
Suppose $n\left( S \right)$ denote the total number of the possible events of random experiment and then dividing both left hand side and right hand side of the of the above equation we get,
\[\dfrac{{P\left( {A \cup B} \right)}}{{n\left( S \right)}} = \dfrac{{P\left( A \right)}}{{n\left( S \right)}} + \dfrac{{P\left( B \right)}}{{n\left( S \right)}} - \dfrac{{P\left( {A \cap B} \right)}}{{n\left( S \right)}}\]
Now, we know that a formula for probability $P\left( x \right) = \dfrac{{n\left( x \right)}}{{n\left( S \right)}}$. By applying this we can write
\[P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)\].
Hence, the above given addition theorem of probability is proved.
Note:
Special case: If two events A and B are mutually exclusive, then $A \cap B$ is a null set. That is $n\left( {A \cap B} \right) = 0$ So, the probability of happening of at least one of the events is equal to the probability of happening of event A and the probability of happening of event B. Mathematically it is written as $P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)$. \[\] Two events A and B are independent events if the equation \[P\left( {A \cap B} \right) = P\left( A \right) \times P\left( B \right)\] holds true.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
Difference Between Plant Cell and Animal Cell
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE