Answer
Verified
380.7k+ views
Hint: Here, in the question, we have been given a quadratic equation and we are asked to solve for it using completing the square method. To solve the equation means that we have to find the value of the variable present in the equation. Completing the square method is one of the various methods of determining the roots of the quadratic equation.
Complete step-by-step solution:
Given equation \[{x^2} + 5 = 86\]
As the coefficient of \[{x^2}\] is already one, we don’t need to divide here with the coefficient. And the coefficient of \[x\] is also zero. So, we don’t need to divide the coefficient of \[x\] as well. Now, we will take the constant terms on one side of the equation i.e. the right hand side of the equation.
So, we have \[{x^2} + 5 = 86\]
Subtracting \[5\] both sides, we get,
\[{x^2} + 5 - 5 = 86 - 5\]
Rewriting the above equation,
\[{x^2} = 81\]
Taking square root both sides, we get,
\[\sqrt {{x^2}} = \sqrt {81} \]
Simplifying it, we get,
\[ x = \pm \sqrt {81} \\
\Rightarrow x = \pm \sqrt {{{\left( 9 \right)}^2}} \\
\Rightarrow x = \pm 9 \]
Therefore, \[x = 9\] and \[x = - 9\].
Thus, we got two values for \[x\] after solving it using the completing square method.
Hence we got \[x = 9\] and \[x = - 9\].
Note: In the equation given in the question here, there is no difference if we solve it using the completing square method or without using this method. Because the coefficient of \[x\] is zero here, therefore, square completion cannot be done here particularly the way we do in this method.
One thing to keep in mind when we face such types of questions, when finding square roots, is to take both the values positive and negative. Sometimes, we skip the negative value in a hurry.
Complete step-by-step solution:
Given equation \[{x^2} + 5 = 86\]
As the coefficient of \[{x^2}\] is already one, we don’t need to divide here with the coefficient. And the coefficient of \[x\] is also zero. So, we don’t need to divide the coefficient of \[x\] as well. Now, we will take the constant terms on one side of the equation i.e. the right hand side of the equation.
So, we have \[{x^2} + 5 = 86\]
Subtracting \[5\] both sides, we get,
\[{x^2} + 5 - 5 = 86 - 5\]
Rewriting the above equation,
\[{x^2} = 81\]
Taking square root both sides, we get,
\[\sqrt {{x^2}} = \sqrt {81} \]
Simplifying it, we get,
\[ x = \pm \sqrt {81} \\
\Rightarrow x = \pm \sqrt {{{\left( 9 \right)}^2}} \\
\Rightarrow x = \pm 9 \]
Therefore, \[x = 9\] and \[x = - 9\].
Thus, we got two values for \[x\] after solving it using the completing square method.
Hence we got \[x = 9\] and \[x = - 9\].
Note: In the equation given in the question here, there is no difference if we solve it using the completing square method or without using this method. Because the coefficient of \[x\] is zero here, therefore, square completion cannot be done here particularly the way we do in this method.
One thing to keep in mind when we face such types of questions, when finding square roots, is to take both the values positive and negative. Sometimes, we skip the negative value in a hurry.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Who was the Governor general of India at the time of class 11 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference Between Plant Cell and Animal Cell