
How do you solve this?
\[\dfrac{1-t{{g}^{2}}{{22.5}^{\circ }}}{tg{{22.5}^{\circ }}}\]
Answer
474.6k+ views
Hint: In the above question, we have been given an expression in the terms of the tangent function. The tangent function has the argument of ${{22.5}^{\circ }}$. For solving it, we can multiply and divide the given expression by two so that the given expression will become \[\dfrac{2\left( 1-{{\tan }^{2}}{{22.5}^{\circ }} \right)}{2\tan {{22.5}^{\circ }}}\]. Then we need to use the trigonometric identity given by $\tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x}$ and take its reciprocal to obtain $\dfrac{1-{{\tan }^{2}}x}{2\tan x}=\cot 2x$. Then on substituting $x={{22.5}^{\circ }}$ we will get \[\dfrac{1-{{\tan }^{2}}{{22.5}^{\circ }}}{2\tan {{22.5}^{\circ }}}=\cot {{45}^{\circ }}\] which can be substituted in the expression \[\dfrac{2\left( 1-{{\tan }^{2}}{{22.5}^{\circ }} \right)}{2\tan {{22.5}^{\circ }}}\] to finally obtain its value.
Complete step-by-step solution:
The trigonometric expression given in the above question is
$\Rightarrow \dfrac{1-{{\tan }^{2}}{{22.5}^{\circ }}}{\tan {{22.5}^{\circ }}}$
Multiplying the numerator and the denominator of the above expression by two, we get
\[\begin{align}
& \Rightarrow \dfrac{2\left( 1-{{\tan }^{2}}{{22.5}^{\circ }} \right)}{2\tan {{22.5}^{\circ }}} \\
& \Rightarrow 2\left( \dfrac{1-{{\tan }^{2}}{{22.5}^{\circ }}}{2\tan {{22.5}^{\circ }}} \right).......\left( i \right) \\
\end{align}\]
Now, we know the trigonometric identity given by
$\begin{align}
& \Rightarrow \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} \\
& \Rightarrow \dfrac{2\tan x}{1-{{\tan }^{2}}x}=\tan 2x \\
\end{align}$
Taking reciprocal on both the sides of the above identity we get
$\begin{align}
& \Rightarrow \dfrac{1-{{\tan }^{2}}x}{2\tan x}=\dfrac{1}{\tan 2x} \\
& \Rightarrow \dfrac{1-{{\tan }^{2}}x}{2\tan x}=\cot 2x \\
\end{align}$
On substituting $x={{22.5}^{\circ }}$ in the above identity we get
\[\begin{align}
& \Rightarrow \dfrac{1-{{\tan }^{2}}{{22.5}^{\circ }}}{2\tan {{22.5}^{\circ }}}=\cot 2\left( {{22.5}^{\circ }} \right) \\
& \Rightarrow \dfrac{1-{{\tan }^{2}}{{22.5}^{\circ }}}{2\tan {{22.5}^{\circ }}}=\cot {{45}^{\circ }} \\
\end{align}\]
Now, we know that $\cot {{45}^{\circ }}=1$. Putting this above we get
\[\Rightarrow \dfrac{1-{{\tan }^{2}}{{22.5}^{\circ }}}{2\tan {{22.5}^{\circ }}}=1\]
Putting the above identity in the (i) expression, we get
$\begin{align}
& \Rightarrow 2\left( 1 \right) \\
& \Rightarrow 2 \\
\end{align}$
Hence, the value of the given trigonometric expression is finally found to be equal to $2$.
Note: We have to remember the important trigonometric identities for solving these types of questions. But since the application of the trigonometric identity $\tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x}$ was not direct in this question, we have to practice the questions related to the application of the trigonometric identities to quickly get the idea.
Complete step-by-step solution:
The trigonometric expression given in the above question is
$\Rightarrow \dfrac{1-{{\tan }^{2}}{{22.5}^{\circ }}}{\tan {{22.5}^{\circ }}}$
Multiplying the numerator and the denominator of the above expression by two, we get
\[\begin{align}
& \Rightarrow \dfrac{2\left( 1-{{\tan }^{2}}{{22.5}^{\circ }} \right)}{2\tan {{22.5}^{\circ }}} \\
& \Rightarrow 2\left( \dfrac{1-{{\tan }^{2}}{{22.5}^{\circ }}}{2\tan {{22.5}^{\circ }}} \right).......\left( i \right) \\
\end{align}\]
Now, we know the trigonometric identity given by
$\begin{align}
& \Rightarrow \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} \\
& \Rightarrow \dfrac{2\tan x}{1-{{\tan }^{2}}x}=\tan 2x \\
\end{align}$
Taking reciprocal on both the sides of the above identity we get
$\begin{align}
& \Rightarrow \dfrac{1-{{\tan }^{2}}x}{2\tan x}=\dfrac{1}{\tan 2x} \\
& \Rightarrow \dfrac{1-{{\tan }^{2}}x}{2\tan x}=\cot 2x \\
\end{align}$
On substituting $x={{22.5}^{\circ }}$ in the above identity we get
\[\begin{align}
& \Rightarrow \dfrac{1-{{\tan }^{2}}{{22.5}^{\circ }}}{2\tan {{22.5}^{\circ }}}=\cot 2\left( {{22.5}^{\circ }} \right) \\
& \Rightarrow \dfrac{1-{{\tan }^{2}}{{22.5}^{\circ }}}{2\tan {{22.5}^{\circ }}}=\cot {{45}^{\circ }} \\
\end{align}\]
Now, we know that $\cot {{45}^{\circ }}=1$. Putting this above we get
\[\Rightarrow \dfrac{1-{{\tan }^{2}}{{22.5}^{\circ }}}{2\tan {{22.5}^{\circ }}}=1\]
Putting the above identity in the (i) expression, we get
$\begin{align}
& \Rightarrow 2\left( 1 \right) \\
& \Rightarrow 2 \\
\end{align}$
Hence, the value of the given trigonometric expression is finally found to be equal to $2$.
Note: We have to remember the important trigonometric identities for solving these types of questions. But since the application of the trigonometric identity $\tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x}$ was not direct in this question, we have to practice the questions related to the application of the trigonometric identities to quickly get the idea.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE
