
How do you solve the system $ 3x-2y=2 $ and $ 5x-5y=10 $ ?
Answer
546.9k+ views
Hint: In the problem, we need to solve the two equations which are in two variables. For this type of equation, we will consider the coefficients of the variables in both equations. Now we will calculate the LCM of the coefficients of any one variable either $ x $ or $ y $. Now we will modify any one of the equations by multiplying with an appropriate constant so that the coefficients of at least one variable must be equal. Now according to the sign of the coefficients, we will add or subtract both equations to get an equation in a single variable. Now we will simplify the obtained equation to get the value of one variable. After getting the value of one variable we will calculate the value of another variable by substituting the calculated value in any one of the given equations and simplify to get the result.
Complete step by step answer:
Given equations are $ 3x-2y=2 $ and $ 5x-5y=10 $ .
Coefficient of $ x $ in the first equation is $ 3 $ .
Coefficient of $ x $ in the second equation is $ 5 $ .
Coefficient of $ y $ in the first equation is $ -2 $ .
Coefficient of $ y $ in the second equation is $ -5 $ .
Considering the coefficients of variable $ x $ . We know that LCM of $ 3 $ , $ 5 $ is $ 3\times 5=15 $ .
Multiplying the given first equation with $ 5 $ , then we will get
$ \begin{align}
& 5\left( 3x-2y \right)=5\times 2 \\
& \Rightarrow 15x-10y=10....\left( \text{i} \right) \\
\end{align} $
Multiplying the given second equation with $ 3 $ , then we will get
$ \begin{align}
& 3\left( 5x-5y \right)=3\times 10 \\
& \Rightarrow 15x-15y=30....\left( \text{ii} \right) \\
\end{align} $
Subtracting the equation $ \left( \text{ii} \right) $ from equation $ \left( \text{i} \right) $ , then we will get
$ 15x-10y-\left( 15x-15y \right)=10-30 $
Simplifying the above equation, then we will get
$ \begin{align}
& \Rightarrow 15x-10y-15x+15y=-20 \\
& \Rightarrow 5y=-20 \\
& \Rightarrow y=-4 \\
\end{align} $
Substituting this value in the given first equation, then we will get
$ \begin{align}
& \Rightarrow 3x-2\left( -4 \right)=2 \\
& \Rightarrow 3x+8=2 \\
& \Rightarrow 3x=-6 \\
& \Rightarrow x=-2 \\
\end{align} $
Hence the solution for the given equations is $ x=-2 $ , $ y=-4 $ .
Note:
If you observe the second given equation, we can take $ 5 $ as common from the equation, then we will get
$ \begin{align}
& 5x-5y=10 \\
& \Rightarrow 5\left( x-y \right)=2\times 5 \\
& \Rightarrow x-y=2 \\
\end{align} $
Now you can multiply $ 3 $ to eliminate $ x $ variable or $ 2 $ to eliminate $ y $ .
Multiplying $ 2 $ to the above equation, then we will get
$ \begin{align}
& \Rightarrow 2\left( x-y \right)=2\times 2 \\
& \Rightarrow 2x-2y=4 \\
\end{align} $
Now subtracting the equation $ 3x-2y=2 $ from the above equation, then we will get
$ \begin{align}
& \Rightarrow 2x-2y-\left( 3x-2y \right)=4-2 \\
& \Rightarrow 2x-2y-3x+2y=2 \\
& \Rightarrow x=-2 \\
\end{align} $
Substituting this value in the equation $ x-y=2 $ , then we will get
$ \begin{align}
& y=x-2 \\
& \Rightarrow y=-2-2 \\
& \Rightarrow y=-4 \\
\end{align} $
From both the methods we got the same result.
Complete step by step answer:
Given equations are $ 3x-2y=2 $ and $ 5x-5y=10 $ .
Coefficient of $ x $ in the first equation is $ 3 $ .
Coefficient of $ x $ in the second equation is $ 5 $ .
Coefficient of $ y $ in the first equation is $ -2 $ .
Coefficient of $ y $ in the second equation is $ -5 $ .
Considering the coefficients of variable $ x $ . We know that LCM of $ 3 $ , $ 5 $ is $ 3\times 5=15 $ .
Multiplying the given first equation with $ 5 $ , then we will get
$ \begin{align}
& 5\left( 3x-2y \right)=5\times 2 \\
& \Rightarrow 15x-10y=10....\left( \text{i} \right) \\
\end{align} $
Multiplying the given second equation with $ 3 $ , then we will get
$ \begin{align}
& 3\left( 5x-5y \right)=3\times 10 \\
& \Rightarrow 15x-15y=30....\left( \text{ii} \right) \\
\end{align} $
Subtracting the equation $ \left( \text{ii} \right) $ from equation $ \left( \text{i} \right) $ , then we will get
$ 15x-10y-\left( 15x-15y \right)=10-30 $
Simplifying the above equation, then we will get
$ \begin{align}
& \Rightarrow 15x-10y-15x+15y=-20 \\
& \Rightarrow 5y=-20 \\
& \Rightarrow y=-4 \\
\end{align} $
Substituting this value in the given first equation, then we will get
$ \begin{align}
& \Rightarrow 3x-2\left( -4 \right)=2 \\
& \Rightarrow 3x+8=2 \\
& \Rightarrow 3x=-6 \\
& \Rightarrow x=-2 \\
\end{align} $
Hence the solution for the given equations is $ x=-2 $ , $ y=-4 $ .
Note:
If you observe the second given equation, we can take $ 5 $ as common from the equation, then we will get
$ \begin{align}
& 5x-5y=10 \\
& \Rightarrow 5\left( x-y \right)=2\times 5 \\
& \Rightarrow x-y=2 \\
\end{align} $
Now you can multiply $ 3 $ to eliminate $ x $ variable or $ 2 $ to eliminate $ y $ .
Multiplying $ 2 $ to the above equation, then we will get
$ \begin{align}
& \Rightarrow 2\left( x-y \right)=2\times 2 \\
& \Rightarrow 2x-2y=4 \\
\end{align} $
Now subtracting the equation $ 3x-2y=2 $ from the above equation, then we will get
$ \begin{align}
& \Rightarrow 2x-2y-\left( 3x-2y \right)=4-2 \\
& \Rightarrow 2x-2y-3x+2y=2 \\
& \Rightarrow x=-2 \\
\end{align} $
Substituting this value in the equation $ x-y=2 $ , then we will get
$ \begin{align}
& y=x-2 \\
& \Rightarrow y=-2-2 \\
& \Rightarrow y=-4 \\
\end{align} $
From both the methods we got the same result.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

