
Solve the series $9 + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty $
1) $11e - 4$
2) $11e - 6$
3) $10e + 5$
4) $3e + 4$
Answer
409.5k+ views
Hint: First we are to deduce the given series in the form of a particular series of sum of terms. Then we are to operate the given series of terms to get the ${n^{th}}$ term of the sequence. From the ${n^{th}}$ term we can deduce the ${n^{th}}$ term of the required sequence. Then, we can obtain the sum of the ${n^{th}}$ terms of the sequence to obtain the series of sum of the terms. On calculating we can find the required answer.
Complete step-by-step solution:
The given series is, $9 + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty $.
So, let, $S = 9 + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty $.
We can write it as,
$ \Rightarrow S = \dfrac{9}{{1!}} + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty $.
And, let
${S_1} = 9 + 16 + 27 + 42 + .... + {t_n} - - - \left( 1 \right)$
${S_1} = \;\; 9 + 16 + 27 + 42 + .... + {t_n} - - - \left( 2 \right)$
Now, $\left( 1 \right) - \left( 2 \right)$, we get,
$0 = 9 + 7 + 11 + 15 + .... - {t_n}$
Adding ${t_n}$ on both the sides, we get,
$ \Rightarrow {t_n} = 9 + 7 + 11 + 15 + ....$
\[ \Rightarrow {t_n} = 9 + \left[ {7 + 11 + 15 + .... + {\text{upto }}\left( {n - 1} \right){\text{terms}}} \right]\]
Now, the sum of $n$ terms of an AP, is $\dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ where, $a = $first term of sequence, $d = $ common difference between terms and $n = $ number of terms.
Applying the formula of sum of AP, we get,
$ \Rightarrow {t_n} = 9 + \dfrac{{\left( {n - 1} \right)}}{2}\left\{ {2\left( 7 \right) + \left( {n - 1 - 1} \right)4} \right\}$
[First term $ = 7$ and Common difference $ = 4$]
$ \Rightarrow {t_n} = 9 + \dfrac{{\left( {n - 1} \right)}}{2}\left\{ {14 + \left( {n - 2} \right)4} \right\}$
Opening the brackets,
$ \Rightarrow {t_n} = 9 + \dfrac{{\left( {n - 1} \right)}}{2}\left\{ {14 + 4n - 8} \right\}$
Adding up the terms,
$ \Rightarrow {t_n} = 9 + \dfrac{{\left( {n - 1} \right)}}{2}\left\{ {6 + 4n} \right\}$
Cancelling the common factors in numerator and denominator, we get,
$ \Rightarrow {t_n} = 9 + \left( {n - 1} \right)\left( {2n + 3} \right)$
So, ${n^{th}}$ term of the given series $S = 9 + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty $ is,
${T_n} = \dfrac{{9 + \left( {n - 1} \right)\left( {2n + 3} \right)}}{{n!}}$
Opening the brackets and multiplying, we get,
$ \Rightarrow {T_n} = \dfrac{{9 + (2{n^2} + n - 3)}}{{n!}}$
$ \Rightarrow {T_n} = \dfrac{{2{n^2} + n + 6}}{{n!}}$
Diving each term in numerator by the denominator, we get,
$ \Rightarrow {T_n} = \dfrac{{2{n^2}}}{{n!}} + \dfrac{n}{{n!}} + \dfrac{6}{{n!}}$
We know, $n! = n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right).....1 = n\left( {n - 1} \right)!$
So, on applying this, we get,
$ \Rightarrow {T_n} = \dfrac{{2{n^2}}}{{n\left( {n - 1} \right)!}} + \dfrac{n}{{n\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
$ \Rightarrow {T_n} = \dfrac{{2n}}{{\left( {n - 1} \right)!}} + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
We can write $\left( {2n} \right)$ as $\left( {2n - 2 + 2} \right)$, applying this, we get,
$ \Rightarrow {T_n} = \dfrac{{2n - 2 + 2}}{{\left( {n - 1} \right)!}} + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
$ \Rightarrow {T_n} = \dfrac{{2n - 2}}{{\left( {n - 1} \right)!}} + \dfrac{2}{{\left( {n - 1} \right)!}} + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
Applying the property of factorials again, we get,
$ \Rightarrow {T_n} = \dfrac{{2\left( {n - 1} \right)}}{{\left( {n - 1} \right)\left( {n - 2} \right)!}} + \dfrac{2}{{\left( {n - 1} \right)!}} + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
Now, simplifying, we get,
$ \Rightarrow {T_n} = \dfrac{2}{{\left( {n - 2} \right)!}} + \dfrac{3}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
Now, to find the sum of the series,
$S = \sum {{T_n}} $
$ \Rightarrow S = \sum {\left[ {\dfrac{2}{{\left( {n - 2} \right)!}} + \dfrac{3}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}} \right]} $
Simplifying the expression,
$ \Rightarrow S = \sum {\dfrac{2}{{\left( {n - 2} \right)!}} + \sum {\dfrac{3}{{\left( {n - 1} \right)!}} + \sum {\dfrac{6}{{n!}}} } } $
$ \Rightarrow S = 2.\sum {\dfrac{1}{{\left( {n - 2} \right)!}} + 3.\sum {\dfrac{1}{{\left( {n - 1} \right)!}} + 6.\sum {\dfrac{1}{{n!}}} } } $
Now, simplifying the summation, we get,
$ \Rightarrow S = 2\left( {e} \right)+ 3e + 6\left( {e - 1} \right)$
$ \Rightarrow S = 11e -6 $
Therefore, the correct option of the series is $11e - 6$, correct option is 2.
Note: The sum of series has many aspects like whether the sum will converge to a finite value or not, what is the limit point of the series. Sometimes, a sum tends to appear to a number, but it will never be able to reach the number, such a series is said to be an infinite GP series, in which the GP tends to reach a particular number, but it will never reach the number.
Complete step-by-step solution:
The given series is, $9 + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty $.
So, let, $S = 9 + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty $.
We can write it as,
$ \Rightarrow S = \dfrac{9}{{1!}} + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty $.
And, let
${S_1} = 9 + 16 + 27 + 42 + .... + {t_n} - - - \left( 1 \right)$
${S_1} = \;\; 9 + 16 + 27 + 42 + .... + {t_n} - - - \left( 2 \right)$
Now, $\left( 1 \right) - \left( 2 \right)$, we get,
$0 = 9 + 7 + 11 + 15 + .... - {t_n}$
Adding ${t_n}$ on both the sides, we get,
$ \Rightarrow {t_n} = 9 + 7 + 11 + 15 + ....$
\[ \Rightarrow {t_n} = 9 + \left[ {7 + 11 + 15 + .... + {\text{upto }}\left( {n - 1} \right){\text{terms}}} \right]\]
Now, the sum of $n$ terms of an AP, is $\dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ where, $a = $first term of sequence, $d = $ common difference between terms and $n = $ number of terms.
Applying the formula of sum of AP, we get,
$ \Rightarrow {t_n} = 9 + \dfrac{{\left( {n - 1} \right)}}{2}\left\{ {2\left( 7 \right) + \left( {n - 1 - 1} \right)4} \right\}$
[First term $ = 7$ and Common difference $ = 4$]
$ \Rightarrow {t_n} = 9 + \dfrac{{\left( {n - 1} \right)}}{2}\left\{ {14 + \left( {n - 2} \right)4} \right\}$
Opening the brackets,
$ \Rightarrow {t_n} = 9 + \dfrac{{\left( {n - 1} \right)}}{2}\left\{ {14 + 4n - 8} \right\}$
Adding up the terms,
$ \Rightarrow {t_n} = 9 + \dfrac{{\left( {n - 1} \right)}}{2}\left\{ {6 + 4n} \right\}$
Cancelling the common factors in numerator and denominator, we get,
$ \Rightarrow {t_n} = 9 + \left( {n - 1} \right)\left( {2n + 3} \right)$
So, ${n^{th}}$ term of the given series $S = 9 + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty $ is,
${T_n} = \dfrac{{9 + \left( {n - 1} \right)\left( {2n + 3} \right)}}{{n!}}$
Opening the brackets and multiplying, we get,
$ \Rightarrow {T_n} = \dfrac{{9 + (2{n^2} + n - 3)}}{{n!}}$
$ \Rightarrow {T_n} = \dfrac{{2{n^2} + n + 6}}{{n!}}$
Diving each term in numerator by the denominator, we get,
$ \Rightarrow {T_n} = \dfrac{{2{n^2}}}{{n!}} + \dfrac{n}{{n!}} + \dfrac{6}{{n!}}$
We know, $n! = n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right).....1 = n\left( {n - 1} \right)!$
So, on applying this, we get,
$ \Rightarrow {T_n} = \dfrac{{2{n^2}}}{{n\left( {n - 1} \right)!}} + \dfrac{n}{{n\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
$ \Rightarrow {T_n} = \dfrac{{2n}}{{\left( {n - 1} \right)!}} + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
We can write $\left( {2n} \right)$ as $\left( {2n - 2 + 2} \right)$, applying this, we get,
$ \Rightarrow {T_n} = \dfrac{{2n - 2 + 2}}{{\left( {n - 1} \right)!}} + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
$ \Rightarrow {T_n} = \dfrac{{2n - 2}}{{\left( {n - 1} \right)!}} + \dfrac{2}{{\left( {n - 1} \right)!}} + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
Applying the property of factorials again, we get,
$ \Rightarrow {T_n} = \dfrac{{2\left( {n - 1} \right)}}{{\left( {n - 1} \right)\left( {n - 2} \right)!}} + \dfrac{2}{{\left( {n - 1} \right)!}} + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
Now, simplifying, we get,
$ \Rightarrow {T_n} = \dfrac{2}{{\left( {n - 2} \right)!}} + \dfrac{3}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
Now, to find the sum of the series,
$S = \sum {{T_n}} $
$ \Rightarrow S = \sum {\left[ {\dfrac{2}{{\left( {n - 2} \right)!}} + \dfrac{3}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}} \right]} $
Simplifying the expression,
$ \Rightarrow S = \sum {\dfrac{2}{{\left( {n - 2} \right)!}} + \sum {\dfrac{3}{{\left( {n - 1} \right)!}} + \sum {\dfrac{6}{{n!}}} } } $
$ \Rightarrow S = 2.\sum {\dfrac{1}{{\left( {n - 2} \right)!}} + 3.\sum {\dfrac{1}{{\left( {n - 1} \right)!}} + 6.\sum {\dfrac{1}{{n!}}} } } $
Now, simplifying the summation, we get,
$ \Rightarrow S = 2\left( {e} \right)+ 3e + 6\left( {e - 1} \right)$
$ \Rightarrow S = 11e -6 $
Therefore, the correct option of the series is $11e - 6$, correct option is 2.
Note: The sum of series has many aspects like whether the sum will converge to a finite value or not, what is the limit point of the series. Sometimes, a sum tends to appear to a number, but it will never be able to reach the number, such a series is said to be an infinite GP series, in which the GP tends to reach a particular number, but it will never reach the number.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Number of valence electrons in Chlorine ion are a 16 class 11 chemistry CBSE

What is the modal class for the following table given class 11 maths CBSE
