
Solve the series $9 + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty $
1) $11e - 4$
2) $11e - 6$
3) $10e + 5$
4) $3e + 4$
Answer
506.7k+ views
Hint: First we are to deduce the given series in the form of a particular series of sum of terms. Then we are to operate the given series of terms to get the ${n^{th}}$ term of the sequence. From the ${n^{th}}$ term we can deduce the ${n^{th}}$ term of the required sequence. Then, we can obtain the sum of the ${n^{th}}$ terms of the sequence to obtain the series of sum of the terms. On calculating we can find the required answer.
Complete step-by-step solution:
The given series is, $9 + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty $.
So, let, $S = 9 + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty $.
We can write it as,
$ \Rightarrow S = \dfrac{9}{{1!}} + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty $.
And, let
${S_1} = 9 + 16 + 27 + 42 + .... + {t_n} - - - \left( 1 \right)$
${S_1} = \;\; 9 + 16 + 27 + 42 + .... + {t_n} - - - \left( 2 \right)$
Now, $\left( 1 \right) - \left( 2 \right)$, we get,
$0 = 9 + 7 + 11 + 15 + .... - {t_n}$
Adding ${t_n}$ on both the sides, we get,
$ \Rightarrow {t_n} = 9 + 7 + 11 + 15 + ....$
\[ \Rightarrow {t_n} = 9 + \left[ {7 + 11 + 15 + .... + {\text{upto }}\left( {n - 1} \right){\text{terms}}} \right]\]
Now, the sum of $n$ terms of an AP, is $\dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ where, $a = $first term of sequence, $d = $ common difference between terms and $n = $ number of terms.
Applying the formula of sum of AP, we get,
$ \Rightarrow {t_n} = 9 + \dfrac{{\left( {n - 1} \right)}}{2}\left\{ {2\left( 7 \right) + \left( {n - 1 - 1} \right)4} \right\}$
[First term $ = 7$ and Common difference $ = 4$]
$ \Rightarrow {t_n} = 9 + \dfrac{{\left( {n - 1} \right)}}{2}\left\{ {14 + \left( {n - 2} \right)4} \right\}$
Opening the brackets,
$ \Rightarrow {t_n} = 9 + \dfrac{{\left( {n - 1} \right)}}{2}\left\{ {14 + 4n - 8} \right\}$
Adding up the terms,
$ \Rightarrow {t_n} = 9 + \dfrac{{\left( {n - 1} \right)}}{2}\left\{ {6 + 4n} \right\}$
Cancelling the common factors in numerator and denominator, we get,
$ \Rightarrow {t_n} = 9 + \left( {n - 1} \right)\left( {2n + 3} \right)$
So, ${n^{th}}$ term of the given series $S = 9 + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty $ is,
${T_n} = \dfrac{{9 + \left( {n - 1} \right)\left( {2n + 3} \right)}}{{n!}}$
Opening the brackets and multiplying, we get,
$ \Rightarrow {T_n} = \dfrac{{9 + (2{n^2} + n - 3)}}{{n!}}$
$ \Rightarrow {T_n} = \dfrac{{2{n^2} + n + 6}}{{n!}}$
Diving each term in numerator by the denominator, we get,
$ \Rightarrow {T_n} = \dfrac{{2{n^2}}}{{n!}} + \dfrac{n}{{n!}} + \dfrac{6}{{n!}}$
We know, $n! = n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right).....1 = n\left( {n - 1} \right)!$
So, on applying this, we get,
$ \Rightarrow {T_n} = \dfrac{{2{n^2}}}{{n\left( {n - 1} \right)!}} + \dfrac{n}{{n\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
$ \Rightarrow {T_n} = \dfrac{{2n}}{{\left( {n - 1} \right)!}} + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
We can write $\left( {2n} \right)$ as $\left( {2n - 2 + 2} \right)$, applying this, we get,
$ \Rightarrow {T_n} = \dfrac{{2n - 2 + 2}}{{\left( {n - 1} \right)!}} + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
$ \Rightarrow {T_n} = \dfrac{{2n - 2}}{{\left( {n - 1} \right)!}} + \dfrac{2}{{\left( {n - 1} \right)!}} + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
Applying the property of factorials again, we get,
$ \Rightarrow {T_n} = \dfrac{{2\left( {n - 1} \right)}}{{\left( {n - 1} \right)\left( {n - 2} \right)!}} + \dfrac{2}{{\left( {n - 1} \right)!}} + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
Now, simplifying, we get,
$ \Rightarrow {T_n} = \dfrac{2}{{\left( {n - 2} \right)!}} + \dfrac{3}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
Now, to find the sum of the series,
$S = \sum {{T_n}} $
$ \Rightarrow S = \sum {\left[ {\dfrac{2}{{\left( {n - 2} \right)!}} + \dfrac{3}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}} \right]} $
Simplifying the expression,
$ \Rightarrow S = \sum {\dfrac{2}{{\left( {n - 2} \right)!}} + \sum {\dfrac{3}{{\left( {n - 1} \right)!}} + \sum {\dfrac{6}{{n!}}} } } $
$ \Rightarrow S = 2.\sum {\dfrac{1}{{\left( {n - 2} \right)!}} + 3.\sum {\dfrac{1}{{\left( {n - 1} \right)!}} + 6.\sum {\dfrac{1}{{n!}}} } } $
Now, simplifying the summation, we get,
$ \Rightarrow S = 2\left( {e} \right)+ 3e + 6\left( {e - 1} \right)$
$ \Rightarrow S = 11e -6 $
Therefore, the correct option of the series is $11e - 6$, correct option is 2.
Note: The sum of series has many aspects like whether the sum will converge to a finite value or not, what is the limit point of the series. Sometimes, a sum tends to appear to a number, but it will never be able to reach the number, such a series is said to be an infinite GP series, in which the GP tends to reach a particular number, but it will never reach the number.
Complete step-by-step solution:
The given series is, $9 + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty $.
So, let, $S = 9 + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty $.
We can write it as,
$ \Rightarrow S = \dfrac{9}{{1!}} + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty $.
And, let
${S_1} = 9 + 16 + 27 + 42 + .... + {t_n} - - - \left( 1 \right)$
${S_1} = \;\; 9 + 16 + 27 + 42 + .... + {t_n} - - - \left( 2 \right)$
Now, $\left( 1 \right) - \left( 2 \right)$, we get,
$0 = 9 + 7 + 11 + 15 + .... - {t_n}$
Adding ${t_n}$ on both the sides, we get,
$ \Rightarrow {t_n} = 9 + 7 + 11 + 15 + ....$
\[ \Rightarrow {t_n} = 9 + \left[ {7 + 11 + 15 + .... + {\text{upto }}\left( {n - 1} \right){\text{terms}}} \right]\]
Now, the sum of $n$ terms of an AP, is $\dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ where, $a = $first term of sequence, $d = $ common difference between terms and $n = $ number of terms.
Applying the formula of sum of AP, we get,
$ \Rightarrow {t_n} = 9 + \dfrac{{\left( {n - 1} \right)}}{2}\left\{ {2\left( 7 \right) + \left( {n - 1 - 1} \right)4} \right\}$
[First term $ = 7$ and Common difference $ = 4$]
$ \Rightarrow {t_n} = 9 + \dfrac{{\left( {n - 1} \right)}}{2}\left\{ {14 + \left( {n - 2} \right)4} \right\}$
Opening the brackets,
$ \Rightarrow {t_n} = 9 + \dfrac{{\left( {n - 1} \right)}}{2}\left\{ {14 + 4n - 8} \right\}$
Adding up the terms,
$ \Rightarrow {t_n} = 9 + \dfrac{{\left( {n - 1} \right)}}{2}\left\{ {6 + 4n} \right\}$
Cancelling the common factors in numerator and denominator, we get,
$ \Rightarrow {t_n} = 9 + \left( {n - 1} \right)\left( {2n + 3} \right)$
So, ${n^{th}}$ term of the given series $S = 9 + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty $ is,
${T_n} = \dfrac{{9 + \left( {n - 1} \right)\left( {2n + 3} \right)}}{{n!}}$
Opening the brackets and multiplying, we get,
$ \Rightarrow {T_n} = \dfrac{{9 + (2{n^2} + n - 3)}}{{n!}}$
$ \Rightarrow {T_n} = \dfrac{{2{n^2} + n + 6}}{{n!}}$
Diving each term in numerator by the denominator, we get,
$ \Rightarrow {T_n} = \dfrac{{2{n^2}}}{{n!}} + \dfrac{n}{{n!}} + \dfrac{6}{{n!}}$
We know, $n! = n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right).....1 = n\left( {n - 1} \right)!$
So, on applying this, we get,
$ \Rightarrow {T_n} = \dfrac{{2{n^2}}}{{n\left( {n - 1} \right)!}} + \dfrac{n}{{n\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
$ \Rightarrow {T_n} = \dfrac{{2n}}{{\left( {n - 1} \right)!}} + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
We can write $\left( {2n} \right)$ as $\left( {2n - 2 + 2} \right)$, applying this, we get,
$ \Rightarrow {T_n} = \dfrac{{2n - 2 + 2}}{{\left( {n - 1} \right)!}} + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
$ \Rightarrow {T_n} = \dfrac{{2n - 2}}{{\left( {n - 1} \right)!}} + \dfrac{2}{{\left( {n - 1} \right)!}} + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
Applying the property of factorials again, we get,
$ \Rightarrow {T_n} = \dfrac{{2\left( {n - 1} \right)}}{{\left( {n - 1} \right)\left( {n - 2} \right)!}} + \dfrac{2}{{\left( {n - 1} \right)!}} + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
Now, simplifying, we get,
$ \Rightarrow {T_n} = \dfrac{2}{{\left( {n - 2} \right)!}} + \dfrac{3}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}$
Now, to find the sum of the series,
$S = \sum {{T_n}} $
$ \Rightarrow S = \sum {\left[ {\dfrac{2}{{\left( {n - 2} \right)!}} + \dfrac{3}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}} \right]} $
Simplifying the expression,
$ \Rightarrow S = \sum {\dfrac{2}{{\left( {n - 2} \right)!}} + \sum {\dfrac{3}{{\left( {n - 1} \right)!}} + \sum {\dfrac{6}{{n!}}} } } $
$ \Rightarrow S = 2.\sum {\dfrac{1}{{\left( {n - 2} \right)!}} + 3.\sum {\dfrac{1}{{\left( {n - 1} \right)!}} + 6.\sum {\dfrac{1}{{n!}}} } } $
Now, simplifying the summation, we get,
$ \Rightarrow S = 2\left( {e} \right)+ 3e + 6\left( {e - 1} \right)$
$ \Rightarrow S = 11e -6 $
Therefore, the correct option of the series is $11e - 6$, correct option is 2.
Note: The sum of series has many aspects like whether the sum will converge to a finite value or not, what is the limit point of the series. Sometimes, a sum tends to appear to a number, but it will never be able to reach the number, such a series is said to be an infinite GP series, in which the GP tends to reach a particular number, but it will never reach the number.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

