
Solve the given trigonometric equation:
$\tan \theta + \tan 2\theta + \tan 3\theta = 0.$
Answer
614.7k+ views
Hint: In order to solve the question, we will simply use the formula of $\tan \left( {A + B} \right)$ from the trigonometric table and we will make two factors by solving this factors we will get the value of $\theta $ and the following formula will be used to solve this question.
$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}{\text{ and }}\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$
Complete step-by-step solution -
The given equation is
$\tan \theta + \tan 2\theta + \tan 3\theta = 0.$
Now simplifying the above equations using the formula
$
\Rightarrow \tan \theta + \tan 2\theta + \tan 3\theta = 0 \\
\Rightarrow \tan \theta + \tan 2\theta + \tan \left( {\theta + 2\theta } \right) = 0 \\
$
Using the formula $\left[ {\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right]$
\[
\Rightarrow \tan \theta + \tan 2\theta + \dfrac{{\tan \theta + \tan 2\theta }}{{1 - \tan \theta \tan 2\theta }} = 0 \\
\Rightarrow \left( {\tan \theta + \tan 2\theta } \right)\left( {1 - \tan \theta \tan 2\theta } \right) + \left( {\tan \theta + \tan 2\theta } \right) = 0 \\
\Rightarrow \left( {\tan \theta + \tan 2\theta } \right)\left( {2 - \tan \theta \tan 2\theta } \right) =0 \\
\Rightarrow \tan \theta + \tan 2\theta = 0{\text{ or }}\tan \theta \tan 2\theta = 2 \\
\]
If $\tan \theta + \tan 2\theta = 0$ then the general equation is give as
$
\tan 2\theta = - \tan \theta = \tan \left( { - \theta } \right) \\
\Rightarrow 2\theta = n\pi + \left( { - \theta } \right),n \in z \\
\Rightarrow 3\theta = n\pi ,n \in z \\
\Rightarrow \theta = \dfrac{{n\pi }}{3},n \in z \\
$
If \[\tan \theta \tan 2\theta = 2,\] then the general equation is given as
$\tan \theta \tan 2\theta = 2$
Using the formula $\left[ {\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}} \right]$
\[
\Rightarrow \tan \theta \times \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }} = 2 \\
\Rightarrow {\tan ^2}\theta = 1 - {\tan ^2}\theta \\
\Rightarrow {\tan ^2}\theta = \dfrac{1}{2} \\
\Rightarrow \tan \theta = \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow \tan \theta = \tan \left( {{{35}^0}16'} \right) \\
\Rightarrow \theta = n\pi \pm {35^0}16',n \in z \\
\]
Therefore the solution set is given as
$ = \left\{ {\dfrac{{n\pi }}{3}:n \in z} \right\} \cup \left\{ {n\pi \pm {{35}^0}16':n \in z} \right\}$
Note: In order to solve these types of questions, learn all the formulas of trigonometric identities and learn how to use the values from trigonometric tables. Remember some important values. You must have the concept of quadrants and how to find the general solution of the trigonometric equations. Always try to solve the problems in steps.
$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}{\text{ and }}\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$
Complete step-by-step solution -
The given equation is
$\tan \theta + \tan 2\theta + \tan 3\theta = 0.$
Now simplifying the above equations using the formula
$
\Rightarrow \tan \theta + \tan 2\theta + \tan 3\theta = 0 \\
\Rightarrow \tan \theta + \tan 2\theta + \tan \left( {\theta + 2\theta } \right) = 0 \\
$
Using the formula $\left[ {\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right]$
\[
\Rightarrow \tan \theta + \tan 2\theta + \dfrac{{\tan \theta + \tan 2\theta }}{{1 - \tan \theta \tan 2\theta }} = 0 \\
\Rightarrow \left( {\tan \theta + \tan 2\theta } \right)\left( {1 - \tan \theta \tan 2\theta } \right) + \left( {\tan \theta + \tan 2\theta } \right) = 0 \\
\Rightarrow \left( {\tan \theta + \tan 2\theta } \right)\left( {2 - \tan \theta \tan 2\theta } \right) =0 \\
\Rightarrow \tan \theta + \tan 2\theta = 0{\text{ or }}\tan \theta \tan 2\theta = 2 \\
\]
If $\tan \theta + \tan 2\theta = 0$ then the general equation is give as
$
\tan 2\theta = - \tan \theta = \tan \left( { - \theta } \right) \\
\Rightarrow 2\theta = n\pi + \left( { - \theta } \right),n \in z \\
\Rightarrow 3\theta = n\pi ,n \in z \\
\Rightarrow \theta = \dfrac{{n\pi }}{3},n \in z \\
$
If \[\tan \theta \tan 2\theta = 2,\] then the general equation is given as
$\tan \theta \tan 2\theta = 2$
Using the formula $\left[ {\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}} \right]$
\[
\Rightarrow \tan \theta \times \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }} = 2 \\
\Rightarrow {\tan ^2}\theta = 1 - {\tan ^2}\theta \\
\Rightarrow {\tan ^2}\theta = \dfrac{1}{2} \\
\Rightarrow \tan \theta = \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow \tan \theta = \tan \left( {{{35}^0}16'} \right) \\
\Rightarrow \theta = n\pi \pm {35^0}16',n \in z \\
\]
Therefore the solution set is given as
$ = \left\{ {\dfrac{{n\pi }}{3}:n \in z} \right\} \cup \left\{ {n\pi \pm {{35}^0}16':n \in z} \right\}$
Note: In order to solve these types of questions, learn all the formulas of trigonometric identities and learn how to use the values from trigonometric tables. Remember some important values. You must have the concept of quadrants and how to find the general solution of the trigonometric equations. Always try to solve the problems in steps.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

