
Solve the given pair of linear equations:
$\begin{align}
& \left( a-b \right)x+\left( a+b \right)y={{a}^{2}}-2ab-{{b}^{2}} \\
& \left( a+b \right)\left( x+y \right)={{a}^{2}}+{{b}^{2}} \\
\end{align}$
Answer
606.6k+ views
Hint: In the given pair of linear equations, subtract the second equation from the first equation then you will find that y is eliminated and you are left with the variable x then simplify and get the value of x and substitute the value of x in the second equation. This substitution gives you the value of y.
Complete step-by-step answer:
The given pair of linear equations is:
$\begin{align}
& \left( a-b \right)x+\left( a+b \right)y={{a}^{2}}-2ab-{{b}^{2}} \\
& \left( a+b \right)\left( x+y \right)={{a}^{2}}+{{b}^{2}} \\
\end{align}$
Simplifying the left hand side of the second equation we get,
$\left( a+b \right)x+\left( a+b \right)y={{a}^{2}}+{{b}^{2}}$ ………….. Eq. (1)
$\left( a-b \right)x+\left( a+b \right)y={{a}^{2}}-2ab-{{b}^{2}}$ ………….. Eq. (2)
Subtracting eq. (2) from eq. (1) we get,
$\begin{align}
& \left( a+b \right)x+\left( a+b \right)y={{a}^{2}}+{{b}^{2}} \\
& \dfrac{-\left( \left( a-b \right)x+\left( a+b \right)y={{a}^{2}}-2ab-{{b}^{2}} \right)}{2bx=2{{b}^{2}}+2ab} \\
\end{align}$
Simplifying the result of the above subtraction we get,
$2bx=2{{b}^{2}}+2ab$
As you can see 2 is common on both the left and right hand side of the above equation so it will be cancelled out.
$bx={{b}^{2}}+ab$
Dividing “b” on both the sides of the above equation we get,
$x=b+a$
Substituting the above value of “x” in eq. (1) we get,
$\begin{align}
& \left( a+b \right)x+\left( a+b \right)y={{a}^{2}}+{{b}^{2}} \\
& \Rightarrow \left( a+b \right)\left( a+b \right)+\left( a+b \right)y={{a}^{2}}+{{b}^{2}} \\
& \Rightarrow {{a}^{2}}+{{b}^{2}}+2ab+\left( a+b \right)y={{a}^{2}}+{{b}^{2}} \\
\end{align}$
In the above equation ${{a}^{2}}+{{b}^{2}}$ will be cancelled out from both the left hand and right hand side of the equation.
$\begin{align}
& 2ab+\left( a+b \right)y=0 \\
& \Rightarrow y=-\dfrac{2ab}{a+b} \\
\end{align}$
From the above solution, the values of x and y we have got are: $\begin{align}
& x=a+b; \\
& y=-\dfrac{2ab}{a+b} \\
\end{align}$
Note: You can verify the values of x and y that you have got above by substituting these values of x and y in any one of the given equations.
The value of x and y that we have got above is:
$\begin{align}
& x=a+b; \\
& y=-\dfrac{2ab}{a+b} \\
\end{align}$
We are going to substitute these above values in eq. (1).
$\left( a+b \right)x+\left( a+b \right)y={{a}^{2}}+{{b}^{2}}$
Solving the L.H.S of the above equation we get,
$\begin{align}
& \left( a+b \right)x+\left( a+b \right)y={{a}^{2}}+{{b}^{2}} \\
& \Rightarrow \left( a+b \right)\left( a+b \right)+\left( a+b \right)\left( -\dfrac{2ab}{a+b} \right)={{a}^{2}}+{{b}^{2}} \\
\end{align}$
$\begin{align}
& \Rightarrow {{a}^{2}}+{{b}^{2}}+2ab-2ab={{a}^{2}}+{{b}^{2}} \\
& \Rightarrow {{a}^{2}}+{{b}^{2}}={{a}^{2}}+{{b}^{2}} \\
\end{align}$
From the above equation, we can see that the L.H.S = R.H.S which proves that the values of x and y is satisfying the linear pair of equations.
Complete step-by-step answer:
The given pair of linear equations is:
$\begin{align}
& \left( a-b \right)x+\left( a+b \right)y={{a}^{2}}-2ab-{{b}^{2}} \\
& \left( a+b \right)\left( x+y \right)={{a}^{2}}+{{b}^{2}} \\
\end{align}$
Simplifying the left hand side of the second equation we get,
$\left( a+b \right)x+\left( a+b \right)y={{a}^{2}}+{{b}^{2}}$ ………….. Eq. (1)
$\left( a-b \right)x+\left( a+b \right)y={{a}^{2}}-2ab-{{b}^{2}}$ ………….. Eq. (2)
Subtracting eq. (2) from eq. (1) we get,
$\begin{align}
& \left( a+b \right)x+\left( a+b \right)y={{a}^{2}}+{{b}^{2}} \\
& \dfrac{-\left( \left( a-b \right)x+\left( a+b \right)y={{a}^{2}}-2ab-{{b}^{2}} \right)}{2bx=2{{b}^{2}}+2ab} \\
\end{align}$
Simplifying the result of the above subtraction we get,
$2bx=2{{b}^{2}}+2ab$
As you can see 2 is common on both the left and right hand side of the above equation so it will be cancelled out.
$bx={{b}^{2}}+ab$
Dividing “b” on both the sides of the above equation we get,
$x=b+a$
Substituting the above value of “x” in eq. (1) we get,
$\begin{align}
& \left( a+b \right)x+\left( a+b \right)y={{a}^{2}}+{{b}^{2}} \\
& \Rightarrow \left( a+b \right)\left( a+b \right)+\left( a+b \right)y={{a}^{2}}+{{b}^{2}} \\
& \Rightarrow {{a}^{2}}+{{b}^{2}}+2ab+\left( a+b \right)y={{a}^{2}}+{{b}^{2}} \\
\end{align}$
In the above equation ${{a}^{2}}+{{b}^{2}}$ will be cancelled out from both the left hand and right hand side of the equation.
$\begin{align}
& 2ab+\left( a+b \right)y=0 \\
& \Rightarrow y=-\dfrac{2ab}{a+b} \\
\end{align}$
From the above solution, the values of x and y we have got are: $\begin{align}
& x=a+b; \\
& y=-\dfrac{2ab}{a+b} \\
\end{align}$
Note: You can verify the values of x and y that you have got above by substituting these values of x and y in any one of the given equations.
The value of x and y that we have got above is:
$\begin{align}
& x=a+b; \\
& y=-\dfrac{2ab}{a+b} \\
\end{align}$
We are going to substitute these above values in eq. (1).
$\left( a+b \right)x+\left( a+b \right)y={{a}^{2}}+{{b}^{2}}$
Solving the L.H.S of the above equation we get,
$\begin{align}
& \left( a+b \right)x+\left( a+b \right)y={{a}^{2}}+{{b}^{2}} \\
& \Rightarrow \left( a+b \right)\left( a+b \right)+\left( a+b \right)\left( -\dfrac{2ab}{a+b} \right)={{a}^{2}}+{{b}^{2}} \\
\end{align}$
$\begin{align}
& \Rightarrow {{a}^{2}}+{{b}^{2}}+2ab-2ab={{a}^{2}}+{{b}^{2}} \\
& \Rightarrow {{a}^{2}}+{{b}^{2}}={{a}^{2}}+{{b}^{2}} \\
\end{align}$
From the above equation, we can see that the L.H.S = R.H.S which proves that the values of x and y is satisfying the linear pair of equations.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

