
Solve the given expression:
$\sum\limits_{k=1}^{k=n}{k\left( k+1 \right)\left( k+2 \right)}$
Answer
509.1k+ views
Hint: Express the general term (kth term) of the given series i.e. k (k + 1) (k + 2) as
$k\left( k+1 \right)\left( k+2 \right)=\dfrac{1}{4}\left[ k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)-\left( k-1 \right)k\left( k+1 \right)\left( k+2 \right) \right]$
Now, write the terms of series by putting k = 1, 2, 3, 4………….n and observe the series formed by the above equation, cancel out the same terms with negative and positive signs and hence get summation.
Complete step-by-step answer:
Expression given in the problem is
$\sum\limits_{k=1}^{k=n}{k\left( k+1 \right)\left( k+2 \right)}....................\left( i \right)$
Let us suppose the sum represented in equation (i) is ‘s’. So, we get
$s=\sum\limits_{k=1}^{k=n}{k\left( k+1 \right)\left( k+2 \right)}..................\left( ii \right)$
Now, let us represent the general term (kth term) of the given series as ${{T}_{k}}$ . So, we get
${{T}_{k}}=k\left( k+1 \right)\left( k+2 \right).........................\left( iii \right)$
Now, we can write the above equation by creating the equation in different forms. So, let us observe the equation
k (k + 1) (k + 2) (k + 3) – (k – 1) k(k + 1) (k + 2)…………………(iv)
So, take k (k + 1) (k + 2) as common from the above equation. So, we get
= k (k + 1) (k + 2) [(k + 3) – (k – 1)]
= k (k + 1) (k + 2) (k + 3 – k + 1)
= 4k (k + 1) (k + 2)…………………………(v)
Hence, we can represent 4k (k +1) (k + 2) as
4k (k + 1) (k + 2) = k (k + 1) (k + 2) (k + 3) – (k -1) (k) (k + 1) (k + 2) or
$k\left( k+1 \right)\left( k+2 \right)=\dfrac{1}{4}\left[ k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)-\left( k-1 \right)\left( k \right)\left( k+1 \right)\left( k+2 \right) \right].....................\left( vi \right)$
So, we can represent ${{T}_{k}}$ from the equation (iii) with the help of equation (vi) as
${{T}_{k}}=\dfrac{1}{4}\left[ k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)-\left( k-1 \right)k\left( k+1 \right)\left( k+2 \right) \right].....................\left( vii \right)$
Hence, we can get sum ‘s’ by putting k = 1, 2, 3………n as equation (ii) has the same general term as given in equation (vii). So, we get sum ‘s’ as
$s=\dfrac{1}{4}\sum\limits_{k=1}^{n}{\left[ k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)-\left( k-1 \right)k\left( k+1 \right)\left( k+2 \right) \right]}$
Now, we can get s by putting k = 1, 2, 3……………..n. So, we can write ‘s’ as
$s=\dfrac{1}{4}\left[ \begin{align}
& 1.2.3.4-0.1.2.3+ \\
& 2.3.4.5-1.2.3.4+ \\
& 3.4.5.6-2.3.4.5+ \\
& 4.5.6.7-3.4.5.6+ \\
& .\text{ }\text{.} \\
& .\text{ }\text{.} \\
& .\text{ }\text{.} \\
& .\text{ }\text{.} \\
& \left( n-1 \right)n\left( n+1 \right)\left( n+2 \right)-\left( n-2 \right)\left( n-1 \right)n\left( n+1 \right)+n\left( n+1 \right)\left( n+2 \right)\left( n+3 \right)-\left( -1 \right)n\left( n+1 \right)\left( n+2 \right) \\
\end{align} \right]$
Now, we can observe the above expression written in the form of
${{T}_{1}}+{{T}_{2}}+{{T}_{3}}+{{T}_{4}}+...................+{{T}_{n}}$
Sum of the second third term till last term we can cancel out 1.2.3.4 and -1.2.3.4 from first row and second row similarly, we can cancel out 2.3.4.5 and -2.3.4.5 from second and third row respectively and similarly apply the same process up to the last row. Hence, we will get only one term remaining with the series, given as
$s=\dfrac{1}{4}\left[ n\left( n+1 \right)\left( n+2 \right)\left( n+3 \right) \right]$
Hence, sum of the given series in the problem is calculated as
$s=\dfrac{1}{4}\left[ n\left( n+1 \right)\left( n+2 \right)\left( n+3 \right) \right]$
Note: Another approach for the given question would be given as
$\begin{align}
& =\sum{k\left( k+1 \right)\left( k+2 \right)} \\
& =\sum{\left( {{k}^{2}}+k \right)\left( k+2 \right)=\sum{\left( {{k}^{{3}}}+{{k}^{2}}+2{{k}^{2}}+2k \right)}} \\
& =\sum{\left( {{k}^{3}}+3{{k}^{2}}+2k \right)} \\
& =\sum{{{k}^{3}}+3\sum{{{k}^{2}}+2\sum{k}}} \\
& =\left( \dfrac{n{{\left( n+1 \right)}^{2}}}{2} \right)+3\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}+\dfrac{n\left( n+1 \right)}{2} \\
\end{align}$
Now, solve the above expression to get the answer. Writing k (k + 1) (k + 2) in different forms is the key point of these kinds of problems. One may apply the same approach with these kinds of general terms. Example:
$\begin{align}
& k\left( k+1 \right)=\dfrac{1}{3}\left[ k\left( k+1 \right)\left( k+2 \right)-\left( k-1 \right)k\left( k+1 \right) \right] \\
& k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)=\dfrac{1}{5}\left[ k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)\left( k+4 \right)-\left( k-1 \right)k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right) \right] \\
\end{align}$
We can apply the same approach if the general term consist of the same terms in fraction as
$\begin{align}
& \dfrac{1}{k\left( k+1 \right)}=\left[ \dfrac{1}{k}-\dfrac{1}{k+1} \right] \\
& \dfrac{1}{k\left( k+1 \right)\left( k+2 \right)}=\dfrac{1}{2}\left[ \dfrac{1}{k\left( k+1 \right)}-\dfrac{1}{\left( k+1 \right)\left( k+2 \right)} \right] \\
& \dfrac{1}{k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)}=\dfrac{1}{3}\left[ \dfrac{1}{k\left( k+1 \right)\left( k+2 \right)}-\dfrac{1}{\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)} \right] \\
\end{align}$
$k\left( k+1 \right)\left( k+2 \right)=\dfrac{1}{4}\left[ k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)-\left( k-1 \right)k\left( k+1 \right)\left( k+2 \right) \right]$
Now, write the terms of series by putting k = 1, 2, 3, 4………….n and observe the series formed by the above equation, cancel out the same terms with negative and positive signs and hence get summation.
Complete step-by-step answer:
Expression given in the problem is
$\sum\limits_{k=1}^{k=n}{k\left( k+1 \right)\left( k+2 \right)}....................\left( i \right)$
Let us suppose the sum represented in equation (i) is ‘s’. So, we get
$s=\sum\limits_{k=1}^{k=n}{k\left( k+1 \right)\left( k+2 \right)}..................\left( ii \right)$
Now, let us represent the general term (kth term) of the given series as ${{T}_{k}}$ . So, we get
${{T}_{k}}=k\left( k+1 \right)\left( k+2 \right).........................\left( iii \right)$
Now, we can write the above equation by creating the equation in different forms. So, let us observe the equation
k (k + 1) (k + 2) (k + 3) – (k – 1) k(k + 1) (k + 2)…………………(iv)
So, take k (k + 1) (k + 2) as common from the above equation. So, we get
= k (k + 1) (k + 2) [(k + 3) – (k – 1)]
= k (k + 1) (k + 2) (k + 3 – k + 1)
= 4k (k + 1) (k + 2)…………………………(v)
Hence, we can represent 4k (k +1) (k + 2) as
4k (k + 1) (k + 2) = k (k + 1) (k + 2) (k + 3) – (k -1) (k) (k + 1) (k + 2) or
$k\left( k+1 \right)\left( k+2 \right)=\dfrac{1}{4}\left[ k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)-\left( k-1 \right)\left( k \right)\left( k+1 \right)\left( k+2 \right) \right].....................\left( vi \right)$
So, we can represent ${{T}_{k}}$ from the equation (iii) with the help of equation (vi) as
${{T}_{k}}=\dfrac{1}{4}\left[ k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)-\left( k-1 \right)k\left( k+1 \right)\left( k+2 \right) \right].....................\left( vii \right)$
Hence, we can get sum ‘s’ by putting k = 1, 2, 3………n as equation (ii) has the same general term as given in equation (vii). So, we get sum ‘s’ as
$s=\dfrac{1}{4}\sum\limits_{k=1}^{n}{\left[ k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)-\left( k-1 \right)k\left( k+1 \right)\left( k+2 \right) \right]}$
Now, we can get s by putting k = 1, 2, 3……………..n. So, we can write ‘s’ as
$s=\dfrac{1}{4}\left[ \begin{align}
& 1.2.3.4-0.1.2.3+ \\
& 2.3.4.5-1.2.3.4+ \\
& 3.4.5.6-2.3.4.5+ \\
& 4.5.6.7-3.4.5.6+ \\
& .\text{ }\text{.} \\
& .\text{ }\text{.} \\
& .\text{ }\text{.} \\
& .\text{ }\text{.} \\
& \left( n-1 \right)n\left( n+1 \right)\left( n+2 \right)-\left( n-2 \right)\left( n-1 \right)n\left( n+1 \right)+n\left( n+1 \right)\left( n+2 \right)\left( n+3 \right)-\left( -1 \right)n\left( n+1 \right)\left( n+2 \right) \\
\end{align} \right]$
Now, we can observe the above expression written in the form of
${{T}_{1}}+{{T}_{2}}+{{T}_{3}}+{{T}_{4}}+...................+{{T}_{n}}$
Sum of the second third term till last term we can cancel out 1.2.3.4 and -1.2.3.4 from first row and second row similarly, we can cancel out 2.3.4.5 and -2.3.4.5 from second and third row respectively and similarly apply the same process up to the last row. Hence, we will get only one term remaining with the series, given as
$s=\dfrac{1}{4}\left[ n\left( n+1 \right)\left( n+2 \right)\left( n+3 \right) \right]$
Hence, sum of the given series in the problem is calculated as
$s=\dfrac{1}{4}\left[ n\left( n+1 \right)\left( n+2 \right)\left( n+3 \right) \right]$
Note: Another approach for the given question would be given as
$\begin{align}
& =\sum{k\left( k+1 \right)\left( k+2 \right)} \\
& =\sum{\left( {{k}^{2}}+k \right)\left( k+2 \right)=\sum{\left( {{k}^{{3}}}+{{k}^{2}}+2{{k}^{2}}+2k \right)}} \\
& =\sum{\left( {{k}^{3}}+3{{k}^{2}}+2k \right)} \\
& =\sum{{{k}^{3}}+3\sum{{{k}^{2}}+2\sum{k}}} \\
& =\left( \dfrac{n{{\left( n+1 \right)}^{2}}}{2} \right)+3\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}+\dfrac{n\left( n+1 \right)}{2} \\
\end{align}$
Now, solve the above expression to get the answer. Writing k (k + 1) (k + 2) in different forms is the key point of these kinds of problems. One may apply the same approach with these kinds of general terms. Example:
$\begin{align}
& k\left( k+1 \right)=\dfrac{1}{3}\left[ k\left( k+1 \right)\left( k+2 \right)-\left( k-1 \right)k\left( k+1 \right) \right] \\
& k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)=\dfrac{1}{5}\left[ k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)\left( k+4 \right)-\left( k-1 \right)k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right) \right] \\
\end{align}$
We can apply the same approach if the general term consist of the same terms in fraction as
$\begin{align}
& \dfrac{1}{k\left( k+1 \right)}=\left[ \dfrac{1}{k}-\dfrac{1}{k+1} \right] \\
& \dfrac{1}{k\left( k+1 \right)\left( k+2 \right)}=\dfrac{1}{2}\left[ \dfrac{1}{k\left( k+1 \right)}-\dfrac{1}{\left( k+1 \right)\left( k+2 \right)} \right] \\
& \dfrac{1}{k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)}=\dfrac{1}{3}\left[ \dfrac{1}{k\left( k+1 \right)\left( k+2 \right)}-\dfrac{1}{\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)} \right] \\
\end{align}$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Number of valence electrons in Chlorine ion are a 16 class 11 chemistry CBSE

What is the modal class for the following table given class 11 maths CBSE
