
Solve the given expression:
$\sum\limits_{k=1}^{k=n}{k\left( k+1 \right)\left( k+2 \right)}$
Answer
588k+ views
Hint: Express the general term (kth term) of the given series i.e. k (k + 1) (k + 2) as
$k\left( k+1 \right)\left( k+2 \right)=\dfrac{1}{4}\left[ k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)-\left( k-1 \right)k\left( k+1 \right)\left( k+2 \right) \right]$
Now, write the terms of series by putting k = 1, 2, 3, 4………….n and observe the series formed by the above equation, cancel out the same terms with negative and positive signs and hence get summation.
Complete step-by-step answer:
Expression given in the problem is
$\sum\limits_{k=1}^{k=n}{k\left( k+1 \right)\left( k+2 \right)}....................\left( i \right)$
Let us suppose the sum represented in equation (i) is ‘s’. So, we get
$s=\sum\limits_{k=1}^{k=n}{k\left( k+1 \right)\left( k+2 \right)}..................\left( ii \right)$
Now, let us represent the general term (kth term) of the given series as ${{T}_{k}}$ . So, we get
${{T}_{k}}=k\left( k+1 \right)\left( k+2 \right).........................\left( iii \right)$
Now, we can write the above equation by creating the equation in different forms. So, let us observe the equation
k (k + 1) (k + 2) (k + 3) – (k – 1) k(k + 1) (k + 2)…………………(iv)
So, take k (k + 1) (k + 2) as common from the above equation. So, we get
= k (k + 1) (k + 2) [(k + 3) – (k – 1)]
= k (k + 1) (k + 2) (k + 3 – k + 1)
= 4k (k + 1) (k + 2)…………………………(v)
Hence, we can represent 4k (k +1) (k + 2) as
4k (k + 1) (k + 2) = k (k + 1) (k + 2) (k + 3) – (k -1) (k) (k + 1) (k + 2) or
$k\left( k+1 \right)\left( k+2 \right)=\dfrac{1}{4}\left[ k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)-\left( k-1 \right)\left( k \right)\left( k+1 \right)\left( k+2 \right) \right].....................\left( vi \right)$
So, we can represent ${{T}_{k}}$ from the equation (iii) with the help of equation (vi) as
${{T}_{k}}=\dfrac{1}{4}\left[ k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)-\left( k-1 \right)k\left( k+1 \right)\left( k+2 \right) \right].....................\left( vii \right)$
Hence, we can get sum ‘s’ by putting k = 1, 2, 3………n as equation (ii) has the same general term as given in equation (vii). So, we get sum ‘s’ as
$s=\dfrac{1}{4}\sum\limits_{k=1}^{n}{\left[ k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)-\left( k-1 \right)k\left( k+1 \right)\left( k+2 \right) \right]}$
Now, we can get s by putting k = 1, 2, 3……………..n. So, we can write ‘s’ as
$s=\dfrac{1}{4}\left[ \begin{align}
& 1.2.3.4-0.1.2.3+ \\
& 2.3.4.5-1.2.3.4+ \\
& 3.4.5.6-2.3.4.5+ \\
& 4.5.6.7-3.4.5.6+ \\
& .\text{ }\text{.} \\
& .\text{ }\text{.} \\
& .\text{ }\text{.} \\
& .\text{ }\text{.} \\
& \left( n-1 \right)n\left( n+1 \right)\left( n+2 \right)-\left( n-2 \right)\left( n-1 \right)n\left( n+1 \right)+n\left( n+1 \right)\left( n+2 \right)\left( n+3 \right)-\left( -1 \right)n\left( n+1 \right)\left( n+2 \right) \\
\end{align} \right]$
Now, we can observe the above expression written in the form of
${{T}_{1}}+{{T}_{2}}+{{T}_{3}}+{{T}_{4}}+...................+{{T}_{n}}$
Sum of the second third term till last term we can cancel out 1.2.3.4 and -1.2.3.4 from first row and second row similarly, we can cancel out 2.3.4.5 and -2.3.4.5 from second and third row respectively and similarly apply the same process up to the last row. Hence, we will get only one term remaining with the series, given as
$s=\dfrac{1}{4}\left[ n\left( n+1 \right)\left( n+2 \right)\left( n+3 \right) \right]$
Hence, sum of the given series in the problem is calculated as
$s=\dfrac{1}{4}\left[ n\left( n+1 \right)\left( n+2 \right)\left( n+3 \right) \right]$
Note: Another approach for the given question would be given as
$\begin{align}
& =\sum{k\left( k+1 \right)\left( k+2 \right)} \\
& =\sum{\left( {{k}^{2}}+k \right)\left( k+2 \right)=\sum{\left( {{k}^{{3}}}+{{k}^{2}}+2{{k}^{2}}+2k \right)}} \\
& =\sum{\left( {{k}^{3}}+3{{k}^{2}}+2k \right)} \\
& =\sum{{{k}^{3}}+3\sum{{{k}^{2}}+2\sum{k}}} \\
& =\left( \dfrac{n{{\left( n+1 \right)}^{2}}}{2} \right)+3\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}+\dfrac{n\left( n+1 \right)}{2} \\
\end{align}$
Now, solve the above expression to get the answer. Writing k (k + 1) (k + 2) in different forms is the key point of these kinds of problems. One may apply the same approach with these kinds of general terms. Example:
$\begin{align}
& k\left( k+1 \right)=\dfrac{1}{3}\left[ k\left( k+1 \right)\left( k+2 \right)-\left( k-1 \right)k\left( k+1 \right) \right] \\
& k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)=\dfrac{1}{5}\left[ k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)\left( k+4 \right)-\left( k-1 \right)k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right) \right] \\
\end{align}$
We can apply the same approach if the general term consist of the same terms in fraction as
$\begin{align}
& \dfrac{1}{k\left( k+1 \right)}=\left[ \dfrac{1}{k}-\dfrac{1}{k+1} \right] \\
& \dfrac{1}{k\left( k+1 \right)\left( k+2 \right)}=\dfrac{1}{2}\left[ \dfrac{1}{k\left( k+1 \right)}-\dfrac{1}{\left( k+1 \right)\left( k+2 \right)} \right] \\
& \dfrac{1}{k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)}=\dfrac{1}{3}\left[ \dfrac{1}{k\left( k+1 \right)\left( k+2 \right)}-\dfrac{1}{\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)} \right] \\
\end{align}$
$k\left( k+1 \right)\left( k+2 \right)=\dfrac{1}{4}\left[ k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)-\left( k-1 \right)k\left( k+1 \right)\left( k+2 \right) \right]$
Now, write the terms of series by putting k = 1, 2, 3, 4………….n and observe the series formed by the above equation, cancel out the same terms with negative and positive signs and hence get summation.
Complete step-by-step answer:
Expression given in the problem is
$\sum\limits_{k=1}^{k=n}{k\left( k+1 \right)\left( k+2 \right)}....................\left( i \right)$
Let us suppose the sum represented in equation (i) is ‘s’. So, we get
$s=\sum\limits_{k=1}^{k=n}{k\left( k+1 \right)\left( k+2 \right)}..................\left( ii \right)$
Now, let us represent the general term (kth term) of the given series as ${{T}_{k}}$ . So, we get
${{T}_{k}}=k\left( k+1 \right)\left( k+2 \right).........................\left( iii \right)$
Now, we can write the above equation by creating the equation in different forms. So, let us observe the equation
k (k + 1) (k + 2) (k + 3) – (k – 1) k(k + 1) (k + 2)…………………(iv)
So, take k (k + 1) (k + 2) as common from the above equation. So, we get
= k (k + 1) (k + 2) [(k + 3) – (k – 1)]
= k (k + 1) (k + 2) (k + 3 – k + 1)
= 4k (k + 1) (k + 2)…………………………(v)
Hence, we can represent 4k (k +1) (k + 2) as
4k (k + 1) (k + 2) = k (k + 1) (k + 2) (k + 3) – (k -1) (k) (k + 1) (k + 2) or
$k\left( k+1 \right)\left( k+2 \right)=\dfrac{1}{4}\left[ k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)-\left( k-1 \right)\left( k \right)\left( k+1 \right)\left( k+2 \right) \right].....................\left( vi \right)$
So, we can represent ${{T}_{k}}$ from the equation (iii) with the help of equation (vi) as
${{T}_{k}}=\dfrac{1}{4}\left[ k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)-\left( k-1 \right)k\left( k+1 \right)\left( k+2 \right) \right].....................\left( vii \right)$
Hence, we can get sum ‘s’ by putting k = 1, 2, 3………n as equation (ii) has the same general term as given in equation (vii). So, we get sum ‘s’ as
$s=\dfrac{1}{4}\sum\limits_{k=1}^{n}{\left[ k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)-\left( k-1 \right)k\left( k+1 \right)\left( k+2 \right) \right]}$
Now, we can get s by putting k = 1, 2, 3……………..n. So, we can write ‘s’ as
$s=\dfrac{1}{4}\left[ \begin{align}
& 1.2.3.4-0.1.2.3+ \\
& 2.3.4.5-1.2.3.4+ \\
& 3.4.5.6-2.3.4.5+ \\
& 4.5.6.7-3.4.5.6+ \\
& .\text{ }\text{.} \\
& .\text{ }\text{.} \\
& .\text{ }\text{.} \\
& .\text{ }\text{.} \\
& \left( n-1 \right)n\left( n+1 \right)\left( n+2 \right)-\left( n-2 \right)\left( n-1 \right)n\left( n+1 \right)+n\left( n+1 \right)\left( n+2 \right)\left( n+3 \right)-\left( -1 \right)n\left( n+1 \right)\left( n+2 \right) \\
\end{align} \right]$
Now, we can observe the above expression written in the form of
${{T}_{1}}+{{T}_{2}}+{{T}_{3}}+{{T}_{4}}+...................+{{T}_{n}}$
Sum of the second third term till last term we can cancel out 1.2.3.4 and -1.2.3.4 from first row and second row similarly, we can cancel out 2.3.4.5 and -2.3.4.5 from second and third row respectively and similarly apply the same process up to the last row. Hence, we will get only one term remaining with the series, given as
$s=\dfrac{1}{4}\left[ n\left( n+1 \right)\left( n+2 \right)\left( n+3 \right) \right]$
Hence, sum of the given series in the problem is calculated as
$s=\dfrac{1}{4}\left[ n\left( n+1 \right)\left( n+2 \right)\left( n+3 \right) \right]$
Note: Another approach for the given question would be given as
$\begin{align}
& =\sum{k\left( k+1 \right)\left( k+2 \right)} \\
& =\sum{\left( {{k}^{2}}+k \right)\left( k+2 \right)=\sum{\left( {{k}^{{3}}}+{{k}^{2}}+2{{k}^{2}}+2k \right)}} \\
& =\sum{\left( {{k}^{3}}+3{{k}^{2}}+2k \right)} \\
& =\sum{{{k}^{3}}+3\sum{{{k}^{2}}+2\sum{k}}} \\
& =\left( \dfrac{n{{\left( n+1 \right)}^{2}}}{2} \right)+3\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}+\dfrac{n\left( n+1 \right)}{2} \\
\end{align}$
Now, solve the above expression to get the answer. Writing k (k + 1) (k + 2) in different forms is the key point of these kinds of problems. One may apply the same approach with these kinds of general terms. Example:
$\begin{align}
& k\left( k+1 \right)=\dfrac{1}{3}\left[ k\left( k+1 \right)\left( k+2 \right)-\left( k-1 \right)k\left( k+1 \right) \right] \\
& k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)=\dfrac{1}{5}\left[ k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)\left( k+4 \right)-\left( k-1 \right)k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right) \right] \\
\end{align}$
We can apply the same approach if the general term consist of the same terms in fraction as
$\begin{align}
& \dfrac{1}{k\left( k+1 \right)}=\left[ \dfrac{1}{k}-\dfrac{1}{k+1} \right] \\
& \dfrac{1}{k\left( k+1 \right)\left( k+2 \right)}=\dfrac{1}{2}\left[ \dfrac{1}{k\left( k+1 \right)}-\dfrac{1}{\left( k+1 \right)\left( k+2 \right)} \right] \\
& \dfrac{1}{k\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)}=\dfrac{1}{3}\left[ \dfrac{1}{k\left( k+1 \right)\left( k+2 \right)}-\dfrac{1}{\left( k+1 \right)\left( k+2 \right)\left( k+3 \right)} \right] \\
\end{align}$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

