
Solve the given expression as,
$\cot A+\csc A=5$ . Find the value of $\cos A$ .
Answer
606.6k+ views
Hint: Using bas identities convert the given expression in terms of $\cos A$ and $\sin A$. Equate the expression to k and find the expression for $\cos A$ and $\sin A$ . Equate them in ${{\cos }^{2}}A+{{\sin }^{2}}A=1$ and solve for k. Thus, substitute the value of k back and get the value of $\cos A$ .
Complete step-by-step answer:
We have been given an expression from which we have to find the value of $\cos A$ .
We have been given, $\cot A+\csc A=5$ ………………………………….(1)
We know the basic identity that $\cot A=\dfrac{\cos A}{\sin A}$ and $\csc A=\dfrac{1}{\sin A}$
Thus, we can rewrite (1) as,
$\cot A+\csc A=5$
$\Rightarrow \dfrac{\cos A}{\sin A}+\dfrac{1}{\sin A}=5$
$\therefore \dfrac{1+\cos A}{\sin A}=5$ , now let us apply cross multiplication property
$\dfrac{1+\cos A}{5}=\sin A=k$ , let us say that its equal to k
$\therefore \dfrac{1+\cos A}{5}=k$ and $\sin A=k$
$\therefore \cos A=5k-1$ and $\sin A=k$
We know that ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$
Similarly, ${{\cos }^{2}}A+{{\sin }^{2}}A=1$
Apply values of $\cos A$ and $\sin A$ in the above expression.
${{\cos }^{2}}A+{{\sin }^{2}}A=1$
${{\left( 5k-1 \right)}^{2}}+{{k}^{2}}=1$
We know the basic identity, ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ . We can expand the above as,
${{\left( 5k \right)}^{2}}-2\times 5k\times 1+{{1}^{2}}+{{k}^{2}}=1$
$25{{k}^{2}}-10k+1+{{k}^{2}}=1$
i.e. $26{{k}^{2}}-10k=0$
$2k\left( 13k-5 \right)=0$
Thus, we get that $2k=0$ and $13k-5=0$ $\Rightarrow k=\dfrac{5}{13}$
Hence, we get the value of $k=0$ and $k=\dfrac{5}{13}$
Now, $\cos A=5k-1$
Let us put the value of k as 0 and $\dfrac{5}{13}$ in the above expression when $k=0$ , $\cos A=5\times 0-1$
$\therefore \cos A=-1$
when $k=\dfrac{5}{13},\text{ }\cos A=\dfrac{5\times 5}{13}-1$
$=\dfrac{25-13}{13}=\dfrac{12}{13}$
$\therefore \cos A=\dfrac{12}{13}$
Hence, we got the value of $\cos A$ as $-1$ and $\dfrac{12}{13}$ .
Note: We have given that the expression is equal to a numeral 5. Thus, we need a numeral or fraction as the value of $\cos A$ . Don’t stop it as $\cos A=5\sin A-1$ , as the value of $\cos A$ . Equate the expression to k and get the value of k.
Complete step-by-step answer:
We have been given an expression from which we have to find the value of $\cos A$ .
We have been given, $\cot A+\csc A=5$ ………………………………….(1)
We know the basic identity that $\cot A=\dfrac{\cos A}{\sin A}$ and $\csc A=\dfrac{1}{\sin A}$
Thus, we can rewrite (1) as,
$\cot A+\csc A=5$
$\Rightarrow \dfrac{\cos A}{\sin A}+\dfrac{1}{\sin A}=5$
$\therefore \dfrac{1+\cos A}{\sin A}=5$ , now let us apply cross multiplication property
$\dfrac{1+\cos A}{5}=\sin A=k$ , let us say that its equal to k
$\therefore \dfrac{1+\cos A}{5}=k$ and $\sin A=k$
$\therefore \cos A=5k-1$ and $\sin A=k$
We know that ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$
Similarly, ${{\cos }^{2}}A+{{\sin }^{2}}A=1$
Apply values of $\cos A$ and $\sin A$ in the above expression.
${{\cos }^{2}}A+{{\sin }^{2}}A=1$
${{\left( 5k-1 \right)}^{2}}+{{k}^{2}}=1$
We know the basic identity, ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ . We can expand the above as,
${{\left( 5k \right)}^{2}}-2\times 5k\times 1+{{1}^{2}}+{{k}^{2}}=1$
$25{{k}^{2}}-10k+1+{{k}^{2}}=1$
i.e. $26{{k}^{2}}-10k=0$
$2k\left( 13k-5 \right)=0$
Thus, we get that $2k=0$ and $13k-5=0$ $\Rightarrow k=\dfrac{5}{13}$
Hence, we get the value of $k=0$ and $k=\dfrac{5}{13}$
Now, $\cos A=5k-1$
Let us put the value of k as 0 and $\dfrac{5}{13}$ in the above expression when $k=0$ , $\cos A=5\times 0-1$
$\therefore \cos A=-1$
when $k=\dfrac{5}{13},\text{ }\cos A=\dfrac{5\times 5}{13}-1$
$=\dfrac{25-13}{13}=\dfrac{12}{13}$
$\therefore \cos A=\dfrac{12}{13}$
Hence, we got the value of $\cos A$ as $-1$ and $\dfrac{12}{13}$ .
Note: We have given that the expression is equal to a numeral 5. Thus, we need a numeral or fraction as the value of $\cos A$ . Don’t stop it as $\cos A=5\sin A-1$ , as the value of $\cos A$ . Equate the expression to k and get the value of k.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

