
Solve the given equation \[\left( {x + y - 1} \right)dx + \left( {2x + 2y - 3} \right)dy = 0\]
Answer
613.8k+ views
Hint: This problem can be solved by using a substitution method. According to the substitution method, the given integral can be transformed into another form by changing the independent variable \[x{\text{ to }}t\]. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given equation is \[\left( {x + y - 1} \right)dx + \left( {2x + 2y - 3} \right)dy = 0\] which can be written as
\[
\Rightarrow \left( {2x + 2y - 3} \right)dy = - \left( {x + y - 1} \right)dx \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \left( {x + y - 1} \right)}}{{2x + 2y - 3}} = \dfrac{{ - \left( {x + y} \right) + 1}}{{2\left( {x + y} \right) - 3}} \\
\]
Put \[x + y = t\] then, by differentiating it on both sides we have \[1 + \dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}}\] i.e., \[\dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}} - 1\]. So, we have
\[
\dfrac{{dt}}{{dx}} - 1 = \dfrac{{ - t + 1}}{{2t - 3}} \\
\dfrac{{dt}}{{dx}} = \dfrac{{1 - t}}{{2t - 3}} + 1 \\
\dfrac{{dt}}{{dx}} = \dfrac{{1 - t + 2t - 3}}{{2t - 3}} \\
\dfrac{{dt}}{{dx}} = \dfrac{{t - 2}}{{2t - 3}} \\
\left( {\dfrac{{2t - 3}}{{t - 2}}} \right)dt = dx \\
\]
Adding and subtracting 1 on the numerator of right-hand side, we get
\[
\left( {\dfrac{{2t - 4 + 1}}{{t - 2}}} \right)dt = dx \\
\left( {\dfrac{{2\left( {t - 2} \right) + 1}}{{t - 2}}} \right)dt = dx \\
\]
Splitting the terms, we have
\[
\left( {\dfrac{{2\left( {t - 2} \right)}}{{t - 2}} + \dfrac{1}{{t - 2}}} \right)dt = dx \\
2dt + \dfrac{2}{{t - 2}}dt = dx \\
\]
Integrating on both sides, we get
\[
\int {2dt + \int {\dfrac{{dt}}{{t - 2}} = \int {dx} } } \\
2t + \ln \left| {t - 2} \right| = x + c{\text{ }}\left[ {\because \int {\dfrac{1}{x} = \ln \left| x \right| + c} } \right] \\
\]
Substituting back \[t = x + y\], We get
\[\therefore 2\left( {x + y} \right) + \ln \left| {x + y - 2} \right| = x + c\]
Thus, the solution of the equation \[\left( {x + y - 1} \right)dx + \left( {2x + 2y - 3} \right)dy = 0\] is \[2\left( {x + y} \right) + \ln \left| {x + y - 2} \right| = x + c\].
Note: A constant namely integrating constant that is added to the function obtained by evaluating the indefinite integral of a given function, indicating that all indefinite integrals of the given function differ by, at most, a constant. So, it is necessary to add integrating constants after completion of the integral.
Complete step-by-step answer:
Given equation is \[\left( {x + y - 1} \right)dx + \left( {2x + 2y - 3} \right)dy = 0\] which can be written as
\[
\Rightarrow \left( {2x + 2y - 3} \right)dy = - \left( {x + y - 1} \right)dx \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \left( {x + y - 1} \right)}}{{2x + 2y - 3}} = \dfrac{{ - \left( {x + y} \right) + 1}}{{2\left( {x + y} \right) - 3}} \\
\]
Put \[x + y = t\] then, by differentiating it on both sides we have \[1 + \dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}}\] i.e., \[\dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}} - 1\]. So, we have
\[
\dfrac{{dt}}{{dx}} - 1 = \dfrac{{ - t + 1}}{{2t - 3}} \\
\dfrac{{dt}}{{dx}} = \dfrac{{1 - t}}{{2t - 3}} + 1 \\
\dfrac{{dt}}{{dx}} = \dfrac{{1 - t + 2t - 3}}{{2t - 3}} \\
\dfrac{{dt}}{{dx}} = \dfrac{{t - 2}}{{2t - 3}} \\
\left( {\dfrac{{2t - 3}}{{t - 2}}} \right)dt = dx \\
\]
Adding and subtracting 1 on the numerator of right-hand side, we get
\[
\left( {\dfrac{{2t - 4 + 1}}{{t - 2}}} \right)dt = dx \\
\left( {\dfrac{{2\left( {t - 2} \right) + 1}}{{t - 2}}} \right)dt = dx \\
\]
Splitting the terms, we have
\[
\left( {\dfrac{{2\left( {t - 2} \right)}}{{t - 2}} + \dfrac{1}{{t - 2}}} \right)dt = dx \\
2dt + \dfrac{2}{{t - 2}}dt = dx \\
\]
Integrating on both sides, we get
\[
\int {2dt + \int {\dfrac{{dt}}{{t - 2}} = \int {dx} } } \\
2t + \ln \left| {t - 2} \right| = x + c{\text{ }}\left[ {\because \int {\dfrac{1}{x} = \ln \left| x \right| + c} } \right] \\
\]
Substituting back \[t = x + y\], We get
\[\therefore 2\left( {x + y} \right) + \ln \left| {x + y - 2} \right| = x + c\]
Thus, the solution of the equation \[\left( {x + y - 1} \right)dx + \left( {2x + 2y - 3} \right)dy = 0\] is \[2\left( {x + y} \right) + \ln \left| {x + y - 2} \right| = x + c\].
Note: A constant namely integrating constant that is added to the function obtained by evaluating the indefinite integral of a given function, indicating that all indefinite integrals of the given function differ by, at most, a constant. So, it is necessary to add integrating constants after completion of the integral.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

