
Solve the following system of equations by substitution method.
$\begin{align}
& x+y=7 \\
& 3x-2y=11 \\
\end{align}$
Answer
613.2k+ views
Hint: In the substitution method, we express one variable in terms of the other variable in one equation and substitute that value in the next equation to get a linear equation in one variable only. We then solve the linear equation and substitute the value in one equation to get the value of the other variable.
Complete step-by-step answer:
We have the following system of equations
$\begin{align}
& x+y=7\text{ (i)} \\
& 3x-2y=11\text{ (ii)} \\
\end{align}$
From equation (i) we have $x+y=7$
Subtracting y from both sides of the equation, we get
$\begin{align}
& x+y-y=7-y \\
& \Rightarrow x=7-y\text{ (iii)} \\
\end{align}$
Substituting the value of x from equation (iii) in equation (ii), we get
$\begin{align}
& 3\left( 7-y \right)-2y=11 \\
& \Rightarrow 21-3y-2y=11 \\
& \Rightarrow 21-5y=11 \\
\end{align}$
Adding 5y on both sides, we get
$\begin{align}
& 21-5y+5y=11+5y \\
& \Rightarrow 11+5y=21 \\
\end{align}$
Subtracting 11 from both sides, we get
$\begin{align}
& 11+5y-11=21-11 \\
& \Rightarrow 5y=10 \\
\end{align}$
Dividing by 5 on both sides, we get
$\begin{align}
& \dfrac{5y}{5}=\dfrac{10}{5} \\
& \Rightarrow y=2 \\
\end{align}$
Substituting the value of y in equation (iii) we get
$x=7-y=7-2=5$
Hence x = 2, y=5 is the solution of the given system of equations.
Note: [1] We can also solve the above question by using the Matrix method.
In matrix method we write the given system of equations as AX=B
Pre-multiplying both sides by ${{A}^{-1}}$ we get
$\begin{align}
& {{A}^{-1}}AX={{A}^{-1}}B \\
& \Rightarrow IX={{A}^{-1}}B \\
& \Rightarrow X={{A}^{-1}}B \\
\end{align}$
Hence the solutions are found.
In the given question we have $A=\left[ \begin{matrix}
1 & 1 \\
3 & -2 \\
\end{matrix} \right]$, $X=\left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]$ and $B=\left[ \begin{matrix}
7 \\
11 \\
\end{matrix} \right]$
Finding the inverse:
We know ${{A}^{-1}}=\dfrac{1}{\det (A)}adj(A)$
$\begin{align}
& \det (A)=1(-2)-3(1)=-2-3=-5 \\
& adj(A)={{\left[ \begin{matrix}
-2 & -3 \\
-1 & 1 \\
\end{matrix} \right]}^{T}}=\left[ \begin{matrix}
-2 & -1 \\
-3 & 1 \\
\end{matrix} \right] \\
\end{align}$
Hence, we have ${{A}^{-1}}=\dfrac{1}{-5}\left[ \begin{matrix}
-2 & -1 \\
-3 & 1 \\
\end{matrix} \right]$
i.e. ${{A}^{-1}}=\left[ \begin{matrix}
\dfrac{2}{5} & \dfrac{1}{5} \\
\dfrac{3}{5} & \dfrac{-1}{5} \\
\end{matrix} \right]$
Hence, we have $X={{A}^{-1}}B=\left[ \begin{matrix}
\dfrac{2}{5} & \dfrac{1}{5} \\
\dfrac{3}{5} & \dfrac{-1}{5} \\
\end{matrix} \right]\times \left[ \begin{matrix}
7 \\
11 \\
\end{matrix} \right]=\left[ \begin{matrix}
\dfrac{14}{5}+\dfrac{11}{5} \\
\dfrac{21}{5}-\dfrac{11}{5} \\
\end{matrix} \right]=\left[ \begin{matrix}
\dfrac{25}{5} \\
\dfrac{10}{5} \\
\end{matrix} \right]=\left[ \begin{matrix}
5 \\
2 \\
\end{matrix} \right]$
Hence x =5 and y = 2 is the solution of the given system of equations.
[2] Graphically we can find the coordinates of the point of intersection of these lines to get the solution of the system of equations.
As is evident from the graph the two lines intersect at point A (5,2)
Hence x = 5 and y = 2 is the solution of the given system of equations.
Complete step-by-step answer:
We have the following system of equations
$\begin{align}
& x+y=7\text{ (i)} \\
& 3x-2y=11\text{ (ii)} \\
\end{align}$
From equation (i) we have $x+y=7$
Subtracting y from both sides of the equation, we get
$\begin{align}
& x+y-y=7-y \\
& \Rightarrow x=7-y\text{ (iii)} \\
\end{align}$
Substituting the value of x from equation (iii) in equation (ii), we get
$\begin{align}
& 3\left( 7-y \right)-2y=11 \\
& \Rightarrow 21-3y-2y=11 \\
& \Rightarrow 21-5y=11 \\
\end{align}$
Adding 5y on both sides, we get
$\begin{align}
& 21-5y+5y=11+5y \\
& \Rightarrow 11+5y=21 \\
\end{align}$
Subtracting 11 from both sides, we get
$\begin{align}
& 11+5y-11=21-11 \\
& \Rightarrow 5y=10 \\
\end{align}$
Dividing by 5 on both sides, we get
$\begin{align}
& \dfrac{5y}{5}=\dfrac{10}{5} \\
& \Rightarrow y=2 \\
\end{align}$
Substituting the value of y in equation (iii) we get
$x=7-y=7-2=5$
Hence x = 2, y=5 is the solution of the given system of equations.
Note: [1] We can also solve the above question by using the Matrix method.
In matrix method we write the given system of equations as AX=B
Pre-multiplying both sides by ${{A}^{-1}}$ we get
$\begin{align}
& {{A}^{-1}}AX={{A}^{-1}}B \\
& \Rightarrow IX={{A}^{-1}}B \\
& \Rightarrow X={{A}^{-1}}B \\
\end{align}$
Hence the solutions are found.
In the given question we have $A=\left[ \begin{matrix}
1 & 1 \\
3 & -2 \\
\end{matrix} \right]$, $X=\left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]$ and $B=\left[ \begin{matrix}
7 \\
11 \\
\end{matrix} \right]$
Finding the inverse:
We know ${{A}^{-1}}=\dfrac{1}{\det (A)}adj(A)$
$\begin{align}
& \det (A)=1(-2)-3(1)=-2-3=-5 \\
& adj(A)={{\left[ \begin{matrix}
-2 & -3 \\
-1 & 1 \\
\end{matrix} \right]}^{T}}=\left[ \begin{matrix}
-2 & -1 \\
-3 & 1 \\
\end{matrix} \right] \\
\end{align}$
Hence, we have ${{A}^{-1}}=\dfrac{1}{-5}\left[ \begin{matrix}
-2 & -1 \\
-3 & 1 \\
\end{matrix} \right]$
i.e. ${{A}^{-1}}=\left[ \begin{matrix}
\dfrac{2}{5} & \dfrac{1}{5} \\
\dfrac{3}{5} & \dfrac{-1}{5} \\
\end{matrix} \right]$
Hence, we have $X={{A}^{-1}}B=\left[ \begin{matrix}
\dfrac{2}{5} & \dfrac{1}{5} \\
\dfrac{3}{5} & \dfrac{-1}{5} \\
\end{matrix} \right]\times \left[ \begin{matrix}
7 \\
11 \\
\end{matrix} \right]=\left[ \begin{matrix}
\dfrac{14}{5}+\dfrac{11}{5} \\
\dfrac{21}{5}-\dfrac{11}{5} \\
\end{matrix} \right]=\left[ \begin{matrix}
\dfrac{25}{5} \\
\dfrac{10}{5} \\
\end{matrix} \right]=\left[ \begin{matrix}
5 \\
2 \\
\end{matrix} \right]$
Hence x =5 and y = 2 is the solution of the given system of equations.
[2] Graphically we can find the coordinates of the point of intersection of these lines to get the solution of the system of equations.
As is evident from the graph the two lines intersect at point A (5,2)
Hence x = 5 and y = 2 is the solution of the given system of equations.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

