
Solve the following pairs of equations by reducing them to a pair of linear equations-
$
\left( i \right)\dfrac{1}{{2x}} + \dfrac{1}{{3y}} = 2;\dfrac{1}{{3x}} + \dfrac{1}{{2y}} = \dfrac{{13}}{6} \\
\left( {ii} \right)\dfrac{2}{{\sqrt x }} + \dfrac{3}{{\sqrt y }} = 2;\dfrac{4}{{\sqrt x }} - \dfrac{9}{{\sqrt y }} = - 1 \\
\left( {iii} \right)\dfrac{4}{x} + 3y = 14;\dfrac{3}{x} - 4y = 23 \\
\left( {iv} \right)\dfrac{5}{{x - 1}} + \dfrac{1}{{y - 2}} = 2;\dfrac{6}{{x - 1}} - \dfrac{3}{{y - 2}} = 1 \\
\left( v \right)\dfrac{{7x - 2y}}{{xy}} = 5;\dfrac{{8x + 7y}}{{xy}} = 15 \\
\left( {vi} \right)6x + 3y = 6xy;2x + 4y = 5xy \\
\left( {vii} \right)\dfrac{{10}}{{x + y}} + \dfrac{2}{{x - y}} = 4;\dfrac{{15}}{{x + y}} - \dfrac{5}{{x - y}} = - 2 \\
\left( {viii} \right)\dfrac{1}{{3x + y}} + \dfrac{1}{{3x - y}} = \dfrac{3}{4};\dfrac{1}{{2\left( {3x + y} \right)}} - \dfrac{1}{{2\left( {3x - y} \right)}} = \dfrac{{ - 1}}{8} \\
$
Answer
600k+ views
Hint-Here we will proceed by selecting one of the methods to solve these equations. In this question, we will use a substitution method to solve the equations and get the required values of the equations.
Complete step-by-step solution -
$\left( i \right)\dfrac{1}{{2x}} + \dfrac{1}{{3y}} = 2;\dfrac{1}{{3x}} + \dfrac{1}{{2y}} = \dfrac{{13}}{6}$
Solution - Let us assume $\dfrac{1}{x} = u,\dfrac{1}{y} = v$ in equation 1 and 2.
$
\dfrac{1}{{2x}} + \dfrac{1}{{3y}} = 2...........(1) \\
\dfrac{1}{{3x}} + \dfrac{1}{{2y}} = \dfrac{{13}}{6}............(2) \\
$
So the equations become-
Using equation 1, we get
$\dfrac{1}{2}u + \dfrac{1}{3}v = 2$
Or $\dfrac{{3u + 2v}}{{2 \times 3}} = 2$
Or 3u + 2v = 12 ………………… (3)
Using equation 2, we get
$\dfrac{1}{3}u + \dfrac{1}{2}v = \dfrac{{13}}{6}$
Or $\dfrac{{2u + 3v}}{{2 \times 3}} = \dfrac{{13}}{6}$
Or 2u + 3v = 13 ……………… (4)
Now we will apply substitution method to solve these linear equations-
Firstly, we will take equation 3,
2u + 2v = 12
Or $u = \dfrac{{12 - 2v}}{3}$
Putting value of u in equation 4,
2u + 3v = 13
Or $2\left( {\dfrac{{12 - 2v}}{3}} \right) + 3v = 13$
Multiplying both sides by 3,
$3 \times 2\left( {\dfrac{{12 - 2v}}{3}} \right) + 3 \times 3v = 3 \times 13$
Or 2(12 – 2v) + 9v = 39
Or 24 – 4v + 9v = 39
Or -4v + 9v = 39 – 24
Or 5v = 15
Or v = 3
Now we will put the value of v=3 in equation 3,
3u + 2v = 12
Or 3u + 2(3) = 12
Or 3u + 6 = 12
Or 3u = 12 – 6
Or 3u = 6
Or u = 2
Hence we get v = 3 and u = 2
But we have to find x and y,
We know that
$u = \dfrac{1}{x}$
Or $x = \dfrac{1}{2}$
Similarly we assumed$v = \dfrac{1}{y}$
or $3 = \dfrac{1}{y}$
or $y = \dfrac{1}{3}$
So $x = \dfrac{1}{2}$ and $y = \dfrac{1}{3}$is the solution of the given equation i.e. $\dfrac{1}{{2x}} + \dfrac{1}{{3y}} = 2;\dfrac{1}{{3x}} + \dfrac{1}{{2y}} = \dfrac{{13}}{6}$.
$\left( {ii} \right)\dfrac{2}{{\sqrt x }} + \dfrac{3}{{\sqrt y }} = 2;\dfrac{4}{{\sqrt x }} - \dfrac{9}{{\sqrt y }} = - 1$
Solution – Let us assume $\dfrac{1}{{\sqrt x }} = u;\dfrac{1}{{\sqrt y }} = v$
Now put the value of u and v in equations 1 and 2 i.e. $\begin{gathered}
\dfrac{2}{{\sqrt x }} + \dfrac{3}{{\sqrt y }} = 2.........(1) \\
\dfrac{4}{{\sqrt x }} - \dfrac{9}{{\sqrt y }} = - 1..........(2) \\
\end{gathered} $
So our equations will become-
2u + 3v = 2………. (3)
4u – 9v = -1 ………… (4)
Now by using equation 3 we will get the value of u-
2u + 3v = 2
Or 2u = 2 – 3v
Or $u = \dfrac{{2 - 3v}}{2}$
We will put the value of u in equation 4-
2(2-3v) – 9v = -1
Or 4 - 6v – 9v = -1
Or -15v = -5
Or $v = \dfrac{1}{3}$
Also we will substitute the value of v in equation 3-
2u + 3v = 2
Or $2u + 3\left( {\dfrac{1}{3}} \right) = 2$
Or 2u + 1 = 2
Or 2u = 1
Or $u = \dfrac{1}{2}$
Hence $u = \dfrac{1}{2}$and $v = \dfrac{1}{3}$
But we need to find the value of x and y-
$\dfrac{1}{{\sqrt x }} = u$(calculated)
Or $\dfrac{1}{2} = \dfrac{1}{{\sqrt x }}$
Or $\sqrt x = 2$
Squaring both sides,
${\left( {\sqrt x } \right)^2} = {\left( 2 \right)^2}$
Which implies x = 4
Also $\dfrac{1}{{\sqrt y }} = v$
Or $\dfrac{1}{3} = \dfrac{1}{{\sqrt y }}$
Or $\sqrt y = 3$
Squaring both sides,
${\left( {\sqrt y } \right)^2} = {\left( 3 \right)^2}$
Which implies y = 9
Therefore, x = 4, y = 9 is the solution of the given equations.
$\left( {iii} \right)\dfrac{4}{x} + 3y = 14;\dfrac{3}{x} - 4y = 23$
Solution- $
\dfrac{4}{x} + 3y = 14..........(1) \\
\dfrac{3}{x} - 4y = 23............(2) \\
$
Let us assume $\dfrac{1}{x} = u$ in equation 1 and equation 2.
So our equation becomes
4u + 3y = 14…………. (3)
3u – 4y = 23………... (4)
Now new formed equations are-
4u + 3y = 14…………. (3)
3u – 4y = 23………... (4)
Using equation 3, we will find the value of u-
4u = 14 – 3y
Or $u = \dfrac{{14 - 3y}}{4}$
Now we will put the value of u in equation 4-
$3\left( {\dfrac{{14 - 3y}}{4}} \right) - 4y = 23$
Multiplying both sides by 4,
We get-
$4 \times 3\left( {\dfrac{{14 - 3y}}{4}} \right) - 4 \times 4y = 4 \times 23$
Or 3(14 – 3y) – 16y = 92
Or 42 – 9y – 16y = 92
Or -25y = 50
Or y = -2
Now we will put the value of y in equation 3-
4u + 3y = 14
Or 4u + 3(-2) = 14
Or 4u – 6 = 14
Or $u = \dfrac{{20}}{4}$
Or u = 5
But $u = \dfrac{1}{x}$
Or $5 = \dfrac{1}{x}$
Or $x = \dfrac{1}{5}$
Hence $x = \dfrac{1}{5}$, y = -2 is the solution of the given equation.
$\left( {iv} \right)\dfrac{5}{{x - 1}} + \dfrac{1}{{y - 2}} = 2;\dfrac{6}{{x - 1}} - \dfrac{3}{{y - 2}} = 1$
Solution - $
\dfrac{5}{{x - 1}} + \dfrac{1}{{y - 2}} = 2.........(1) \\
\dfrac{6}{{x - 1}} - \dfrac{3}{{y - 2}} = 1.........(2) \\
$
let us assume $\dfrac{1}{{x - 1}} = u$ and $\dfrac{1}{{y - 2}} = v$
put the value of u and v in equations 1 and 2-
5u + v = 2………… (3)
6u – 3v = 1……… (4)
From equation 3, we get –
5u + v = 2
V = 2 – 5u
Putting the value of v in equation 4, we get-
6u – 3(2 – 5u) = 1
Or 6u – 6 + 15u = 1
Or 6u + 15u = 1 + 6
Or 21u = 7
Or $u = \dfrac{7}{{21}}$
Or $u = \dfrac{1}{3}$
Putting the value of u in equation 3, we get-
$5\left( {\dfrac{1}{3}} \right) + v = 2$
Or $\dfrac{5}{3} + v = 2$
Or $v = \dfrac{1}{3}$
Hence we get $u = \dfrac{1}{3}$and $v = \dfrac{1}{3}$
But we need to find the value of x and y,
We know that $u = \dfrac{1}{{x - 1}}$ and $u = \dfrac{1}{3}$
Equating both the values we get-
$\dfrac{1}{3} = \dfrac{1}{{x - 1}}$
Or x – 1 = 3
Or x = 4
Similarly we know that $v = \dfrac{1}{{y - 2}}$ and $v = \dfrac{1}{3}$
Equating both values we get-
$\dfrac{1}{3} = \dfrac{1}{{y - 2}}$
Or y – 2 = 3
Or y = 5
Therefore, x = 4 and y = 5 is the solution of our given equations.
$\left( v \right)\dfrac{{7x - 2y}}{{xy}} = 5;\dfrac{{8x + 7y}}{{xy}} = 15$
Solution- Here we are given that $\dfrac{{7x - 2y}}{{xy}} = 5$
Or $\dfrac{7}{y} - \dfrac{2}{x} = 5$
Or $\dfrac{{ - 2}}{x} + \dfrac{7}{y} = 5........(1)$
And $\dfrac{{8x + 7y}}{{xy}} = 15$
Or $\dfrac{{8x}}{{xy}} + \dfrac{{7y}}{{xy}} = 15$
Or $\dfrac{8}{y} + \dfrac{7}{x} = 15$
Or $\dfrac{7}{x} + \dfrac{8}{y} = 15...........(2)$
Let us assume $\dfrac{1}{x} = u,\dfrac{1}{y} = v$
Our equations become-
-2u + 7v = 5……… (3)
7u + 8v = 15………. (4)
Hence we solve -
-2u + 7v = 5……… (3)
7u + 8v = 15………. (4)
Using equation 3, we get-
7u = 5 + 2u
Or $v = \dfrac{{5 + 2u}}{7}$
Putting the value of v in equation 4-
$7u + 8\left( {\dfrac{{5 + 2u}}{7}} \right) = 15$
Multiplying both sides by 7-
$7 \times 7u + 7 \times 8\left( {\dfrac{{5 + 2u}}{7}} \right) = 7 \times 15$
Or 49u + 40 + 16u= 105
Or 49u + 16u = 105 – 40
Or 65u = 65
Or u = 1
Putting the value of u in equation 3,
-2(1) + 7v = 5
Or -2 + 7v = 5
Or 7v = 7
Or v = 1
Hence u = 1, v = 1
But we need to find x and y-
We know that $u = \dfrac{1}{x}$
Or $1 = \dfrac{1}{x}$
Or x = 1
And $v = \dfrac{1}{y}$
Or $1 = \dfrac{1}{y}$
Or y = 1
Hence x = 1 and y = 1 is the required solution of the given equations.
$\left( {vi} \right)6x + 3y = 6xy;2x + 4y = 5xy$
Solution- Firstly we will divide whole equation by xy -
$\dfrac{{6x + 3y}}{{xy}} = \dfrac{{6xy}}{{xy}}$
Or $\dfrac{6}{y} + \dfrac{3}{x} = 6......(1)$
$\dfrac{{2x + 4y}}{{xy}} = \dfrac{{5xy}}{{xy}}$
Or $\dfrac{2}{y} + \dfrac{4}{x} = 5.........(2)$
So our equations are-
$\dfrac{6}{y} + \dfrac{3}{x} = 6......(1)$
$\dfrac{2}{y} + \dfrac{4}{x} = 5.........(2)$
Let us assume $\dfrac{1}{x} = u,\dfrac{1}{y} = v$
So our equations become-
6v + 3u = 6 ………. (3)
2v + 4u = 5 ……… (4)
Now using equation 3, we get-
$v = \dfrac{{6 - 3u}}{6}$
Putting the value of v in equation 4-
$2\left( {\dfrac{{6 - 3u}}{6}} \right) + 4u = 5$
Multiplying both sides by 3-
$3\left( {\dfrac{{6 - 3u}}{3}} \right) + 3 \times 4u = 3 \times 5$
Or -3u + 12u = 15 – 6
Or 9u = 9
Or u = 1
Putting u = 1 in equation 3-
6v + 3(1) = 6
Or 6v = 3
Or $v = \dfrac{1}{2}$
But we have to find x and y-
$
u = \dfrac{1}{x} \\
or{\text{ }}1 = \dfrac{1}{x} \\
or{\text{ }}x = 1 \\
$
$
v = \dfrac{1}{y} \\
or{\text{ }}\dfrac{1}{2} = \dfrac{1}{y} \\
or{\text{ y = 2}} \\
$
So x = 1 and y = 2 is the required solution of the given equation.
$\left( {vii} \right)\dfrac{{10}}{{x + y}} + \dfrac{2}{{x - y}} = 4;\dfrac{{15}}{{x + y}} - \dfrac{5}{{x - y}} = - 2$
Solution- $\dfrac{{10}}{{x + y}} + \dfrac{2}{{x - y}} = 4.........(1)$
$\dfrac{{15}}{{x + y}} - \dfrac{5}{{x - y}} = - 2........(2)$
Let us assume $\dfrac{1}{{x + y}} = u,\dfrac{1}{{x - y}} = v$
So our equations become-
10u + 2v = 4………. (3)
15u – 5v = -2……… (4)
Solving these equations-
Using equation 3,
10u = 4 – 2v
Or $u = \dfrac{{4 - 2v}}{{10}}$
Putting the value of u in equation 4-
$15\left( {\dfrac{{4 - 2v}}{10}} \right) - 5v = - 2$
Multiplying both sides by 2-
$2 \times 3\left( {\dfrac{{4 - 2v}}{2}} \right) - 2 \times 5v = 2 \times - 2$
12 – 6v – 10v = -4
Or -16v = -16
Or v = 1
Putting the value of v in equation 3-
10u + 2(1) = 4
Or 10u + 2 = 4
Or 10u = 2
Or $u = \dfrac{1}{5}$
But we need to find x and y-
$
u = \dfrac{1}{{x + y}} \\
or{\text{ }}\dfrac{1}{5} = \dfrac{1}{{x + y}} \\
$
x + y = 5…… (5)
$
v = \dfrac{1}{{x - y}} \\
or{\text{ 1 = }}\dfrac{1}{{x - y}} \\
$
x – y = 1……. (6)
Adding equation 5 and 6, we get-
(x + y) + (x – y) = 6
2x = 6
Or x = 3
Putting the value of x in equation 5-
3 + y = 5
y = 2
So x = 3 and y = 2 is the solution of our given equations.
$\left( {viii} \right)\dfrac{1}{{3x + y}} + \dfrac{1}{{3x - y}} = \dfrac{3}{4};\dfrac{1}{{2\left( {3x + y} \right)}} - \dfrac{1}{{2\left( {3x - y} \right)}} = \dfrac{{ - 1}}{8}$
Solution- $\dfrac{1}{{3x + y}} + \dfrac{1}{{3x - y}} = \dfrac{3}{4}........(1)$
$\dfrac{1}{{2\left( {3x + y} \right)}} - \dfrac{1}{{2\left( {3x - y} \right)}} = \dfrac{{ - 1}}{8}$………. (2)
Let us assume $\dfrac{1}{{3x + y}} = u;\dfrac{1}{{3x - y}} = v$
So our equations become-
$u + v = \dfrac{3}{4}$
Or 4(u + v) = 3
Or 4u + 4v = 3………… (3)
And $\dfrac{1}{2}u - \dfrac{1}{2}v = \dfrac{{ - 1}}{8}$
Or $\dfrac{{u - v}}{2} = \dfrac{{ - 1}}{8}$
Or 4(u – v) = -1
Or 4u – 4v = -1………. (4)
Adding equation 3 and 4, we get
(4u + 4v) + (4u – 4v) = 3 + (-1)
Or 8u = 2
Or $u = \dfrac{1}{4}$
Putting the value of u in equation 3-
$4 \times \dfrac{1}{4} + 4v = 3$
Or 1 + 4v = 3
Or 4v = 2
Or $v = \dfrac{1}{2}$
Hence $u = \dfrac{1}{4},v = \dfrac{1}{2}$
But we need to find x and y-
We know $u = \dfrac{1}{{3x + y}}$
Or $\dfrac{1}{4} = \dfrac{1}{{3x + y}}$
Or 3x + y = 4………. (5)
$v = \dfrac{1}{{3x - y}}$
Or $\dfrac{1}{2} = \dfrac{1}{{3x - y}}$
Or 3x – y = 2……… (6)
Adding equation5 and equation 6-
(3x + y) + (3x – y) = 6
Or 6x = 6
Or x = 1
Putting the value of x in equation 5, we get-
3(1) + y = 4
Or 3 + y = 4
Or y = 4 – 3
Or y = 1
So x = 1 and y = 1 is the solution of the given equation.
Note- Here in order to solve these type of questions, we used a substitution method but we can use other methods also like elimination method and augmented matrices. Also one must know that there is a difference between the methods of solving linear equations in one variable and linear equations in two variables.
Complete step-by-step solution -
$\left( i \right)\dfrac{1}{{2x}} + \dfrac{1}{{3y}} = 2;\dfrac{1}{{3x}} + \dfrac{1}{{2y}} = \dfrac{{13}}{6}$
Solution - Let us assume $\dfrac{1}{x} = u,\dfrac{1}{y} = v$ in equation 1 and 2.
$
\dfrac{1}{{2x}} + \dfrac{1}{{3y}} = 2...........(1) \\
\dfrac{1}{{3x}} + \dfrac{1}{{2y}} = \dfrac{{13}}{6}............(2) \\
$
So the equations become-
Using equation 1, we get
$\dfrac{1}{2}u + \dfrac{1}{3}v = 2$
Or $\dfrac{{3u + 2v}}{{2 \times 3}} = 2$
Or 3u + 2v = 12 ………………… (3)
Using equation 2, we get
$\dfrac{1}{3}u + \dfrac{1}{2}v = \dfrac{{13}}{6}$
Or $\dfrac{{2u + 3v}}{{2 \times 3}} = \dfrac{{13}}{6}$
Or 2u + 3v = 13 ……………… (4)
Now we will apply substitution method to solve these linear equations-
Firstly, we will take equation 3,
2u + 2v = 12
Or $u = \dfrac{{12 - 2v}}{3}$
Putting value of u in equation 4,
2u + 3v = 13
Or $2\left( {\dfrac{{12 - 2v}}{3}} \right) + 3v = 13$
Multiplying both sides by 3,
$3 \times 2\left( {\dfrac{{12 - 2v}}{3}} \right) + 3 \times 3v = 3 \times 13$
Or 2(12 – 2v) + 9v = 39
Or 24 – 4v + 9v = 39
Or -4v + 9v = 39 – 24
Or 5v = 15
Or v = 3
Now we will put the value of v=3 in equation 3,
3u + 2v = 12
Or 3u + 2(3) = 12
Or 3u + 6 = 12
Or 3u = 12 – 6
Or 3u = 6
Or u = 2
Hence we get v = 3 and u = 2
But we have to find x and y,
We know that
$u = \dfrac{1}{x}$
Or $x = \dfrac{1}{2}$
Similarly we assumed$v = \dfrac{1}{y}$
or $3 = \dfrac{1}{y}$
or $y = \dfrac{1}{3}$
So $x = \dfrac{1}{2}$ and $y = \dfrac{1}{3}$is the solution of the given equation i.e. $\dfrac{1}{{2x}} + \dfrac{1}{{3y}} = 2;\dfrac{1}{{3x}} + \dfrac{1}{{2y}} = \dfrac{{13}}{6}$.
$\left( {ii} \right)\dfrac{2}{{\sqrt x }} + \dfrac{3}{{\sqrt y }} = 2;\dfrac{4}{{\sqrt x }} - \dfrac{9}{{\sqrt y }} = - 1$
Solution – Let us assume $\dfrac{1}{{\sqrt x }} = u;\dfrac{1}{{\sqrt y }} = v$
Now put the value of u and v in equations 1 and 2 i.e. $\begin{gathered}
\dfrac{2}{{\sqrt x }} + \dfrac{3}{{\sqrt y }} = 2.........(1) \\
\dfrac{4}{{\sqrt x }} - \dfrac{9}{{\sqrt y }} = - 1..........(2) \\
\end{gathered} $
So our equations will become-
2u + 3v = 2………. (3)
4u – 9v = -1 ………… (4)
Now by using equation 3 we will get the value of u-
2u + 3v = 2
Or 2u = 2 – 3v
Or $u = \dfrac{{2 - 3v}}{2}$
We will put the value of u in equation 4-
2(2-3v) – 9v = -1
Or 4 - 6v – 9v = -1
Or -15v = -5
Or $v = \dfrac{1}{3}$
Also we will substitute the value of v in equation 3-
2u + 3v = 2
Or $2u + 3\left( {\dfrac{1}{3}} \right) = 2$
Or 2u + 1 = 2
Or 2u = 1
Or $u = \dfrac{1}{2}$
Hence $u = \dfrac{1}{2}$and $v = \dfrac{1}{3}$
But we need to find the value of x and y-
$\dfrac{1}{{\sqrt x }} = u$(calculated)
Or $\dfrac{1}{2} = \dfrac{1}{{\sqrt x }}$
Or $\sqrt x = 2$
Squaring both sides,
${\left( {\sqrt x } \right)^2} = {\left( 2 \right)^2}$
Which implies x = 4
Also $\dfrac{1}{{\sqrt y }} = v$
Or $\dfrac{1}{3} = \dfrac{1}{{\sqrt y }}$
Or $\sqrt y = 3$
Squaring both sides,
${\left( {\sqrt y } \right)^2} = {\left( 3 \right)^2}$
Which implies y = 9
Therefore, x = 4, y = 9 is the solution of the given equations.
$\left( {iii} \right)\dfrac{4}{x} + 3y = 14;\dfrac{3}{x} - 4y = 23$
Solution- $
\dfrac{4}{x} + 3y = 14..........(1) \\
\dfrac{3}{x} - 4y = 23............(2) \\
$
Let us assume $\dfrac{1}{x} = u$ in equation 1 and equation 2.
So our equation becomes
4u + 3y = 14…………. (3)
3u – 4y = 23………... (4)
Now new formed equations are-
4u + 3y = 14…………. (3)
3u – 4y = 23………... (4)
Using equation 3, we will find the value of u-
4u = 14 – 3y
Or $u = \dfrac{{14 - 3y}}{4}$
Now we will put the value of u in equation 4-
$3\left( {\dfrac{{14 - 3y}}{4}} \right) - 4y = 23$
Multiplying both sides by 4,
We get-
$4 \times 3\left( {\dfrac{{14 - 3y}}{4}} \right) - 4 \times 4y = 4 \times 23$
Or 3(14 – 3y) – 16y = 92
Or 42 – 9y – 16y = 92
Or -25y = 50
Or y = -2
Now we will put the value of y in equation 3-
4u + 3y = 14
Or 4u + 3(-2) = 14
Or 4u – 6 = 14
Or $u = \dfrac{{20}}{4}$
Or u = 5
But $u = \dfrac{1}{x}$
Or $5 = \dfrac{1}{x}$
Or $x = \dfrac{1}{5}$
Hence $x = \dfrac{1}{5}$, y = -2 is the solution of the given equation.
$\left( {iv} \right)\dfrac{5}{{x - 1}} + \dfrac{1}{{y - 2}} = 2;\dfrac{6}{{x - 1}} - \dfrac{3}{{y - 2}} = 1$
Solution - $
\dfrac{5}{{x - 1}} + \dfrac{1}{{y - 2}} = 2.........(1) \\
\dfrac{6}{{x - 1}} - \dfrac{3}{{y - 2}} = 1.........(2) \\
$
let us assume $\dfrac{1}{{x - 1}} = u$ and $\dfrac{1}{{y - 2}} = v$
put the value of u and v in equations 1 and 2-
5u + v = 2………… (3)
6u – 3v = 1……… (4)
From equation 3, we get –
5u + v = 2
V = 2 – 5u
Putting the value of v in equation 4, we get-
6u – 3(2 – 5u) = 1
Or 6u – 6 + 15u = 1
Or 6u + 15u = 1 + 6
Or 21u = 7
Or $u = \dfrac{7}{{21}}$
Or $u = \dfrac{1}{3}$
Putting the value of u in equation 3, we get-
$5\left( {\dfrac{1}{3}} \right) + v = 2$
Or $\dfrac{5}{3} + v = 2$
Or $v = \dfrac{1}{3}$
Hence we get $u = \dfrac{1}{3}$and $v = \dfrac{1}{3}$
But we need to find the value of x and y,
We know that $u = \dfrac{1}{{x - 1}}$ and $u = \dfrac{1}{3}$
Equating both the values we get-
$\dfrac{1}{3} = \dfrac{1}{{x - 1}}$
Or x – 1 = 3
Or x = 4
Similarly we know that $v = \dfrac{1}{{y - 2}}$ and $v = \dfrac{1}{3}$
Equating both values we get-
$\dfrac{1}{3} = \dfrac{1}{{y - 2}}$
Or y – 2 = 3
Or y = 5
Therefore, x = 4 and y = 5 is the solution of our given equations.
$\left( v \right)\dfrac{{7x - 2y}}{{xy}} = 5;\dfrac{{8x + 7y}}{{xy}} = 15$
Solution- Here we are given that $\dfrac{{7x - 2y}}{{xy}} = 5$
Or $\dfrac{7}{y} - \dfrac{2}{x} = 5$
Or $\dfrac{{ - 2}}{x} + \dfrac{7}{y} = 5........(1)$
And $\dfrac{{8x + 7y}}{{xy}} = 15$
Or $\dfrac{{8x}}{{xy}} + \dfrac{{7y}}{{xy}} = 15$
Or $\dfrac{8}{y} + \dfrac{7}{x} = 15$
Or $\dfrac{7}{x} + \dfrac{8}{y} = 15...........(2)$
Let us assume $\dfrac{1}{x} = u,\dfrac{1}{y} = v$
Our equations become-
-2u + 7v = 5……… (3)
7u + 8v = 15………. (4)
Hence we solve -
-2u + 7v = 5……… (3)
7u + 8v = 15………. (4)
Using equation 3, we get-
7u = 5 + 2u
Or $v = \dfrac{{5 + 2u}}{7}$
Putting the value of v in equation 4-
$7u + 8\left( {\dfrac{{5 + 2u}}{7}} \right) = 15$
Multiplying both sides by 7-
$7 \times 7u + 7 \times 8\left( {\dfrac{{5 + 2u}}{7}} \right) = 7 \times 15$
Or 49u + 40 + 16u= 105
Or 49u + 16u = 105 – 40
Or 65u = 65
Or u = 1
Putting the value of u in equation 3,
-2(1) + 7v = 5
Or -2 + 7v = 5
Or 7v = 7
Or v = 1
Hence u = 1, v = 1
But we need to find x and y-
We know that $u = \dfrac{1}{x}$
Or $1 = \dfrac{1}{x}$
Or x = 1
And $v = \dfrac{1}{y}$
Or $1 = \dfrac{1}{y}$
Or y = 1
Hence x = 1 and y = 1 is the required solution of the given equations.
$\left( {vi} \right)6x + 3y = 6xy;2x + 4y = 5xy$
Solution- Firstly we will divide whole equation by xy -
$\dfrac{{6x + 3y}}{{xy}} = \dfrac{{6xy}}{{xy}}$
Or $\dfrac{6}{y} + \dfrac{3}{x} = 6......(1)$
$\dfrac{{2x + 4y}}{{xy}} = \dfrac{{5xy}}{{xy}}$
Or $\dfrac{2}{y} + \dfrac{4}{x} = 5.........(2)$
So our equations are-
$\dfrac{6}{y} + \dfrac{3}{x} = 6......(1)$
$\dfrac{2}{y} + \dfrac{4}{x} = 5.........(2)$
Let us assume $\dfrac{1}{x} = u,\dfrac{1}{y} = v$
So our equations become-
6v + 3u = 6 ………. (3)
2v + 4u = 5 ……… (4)
Now using equation 3, we get-
$v = \dfrac{{6 - 3u}}{6}$
Putting the value of v in equation 4-
$2\left( {\dfrac{{6 - 3u}}{6}} \right) + 4u = 5$
Multiplying both sides by 3-
$3\left( {\dfrac{{6 - 3u}}{3}} \right) + 3 \times 4u = 3 \times 5$
Or -3u + 12u = 15 – 6
Or 9u = 9
Or u = 1
Putting u = 1 in equation 3-
6v + 3(1) = 6
Or 6v = 3
Or $v = \dfrac{1}{2}$
But we have to find x and y-
$
u = \dfrac{1}{x} \\
or{\text{ }}1 = \dfrac{1}{x} \\
or{\text{ }}x = 1 \\
$
$
v = \dfrac{1}{y} \\
or{\text{ }}\dfrac{1}{2} = \dfrac{1}{y} \\
or{\text{ y = 2}} \\
$
So x = 1 and y = 2 is the required solution of the given equation.
$\left( {vii} \right)\dfrac{{10}}{{x + y}} + \dfrac{2}{{x - y}} = 4;\dfrac{{15}}{{x + y}} - \dfrac{5}{{x - y}} = - 2$
Solution- $\dfrac{{10}}{{x + y}} + \dfrac{2}{{x - y}} = 4.........(1)$
$\dfrac{{15}}{{x + y}} - \dfrac{5}{{x - y}} = - 2........(2)$
Let us assume $\dfrac{1}{{x + y}} = u,\dfrac{1}{{x - y}} = v$
So our equations become-
10u + 2v = 4………. (3)
15u – 5v = -2……… (4)
Solving these equations-
Using equation 3,
10u = 4 – 2v
Or $u = \dfrac{{4 - 2v}}{{10}}$
Putting the value of u in equation 4-
$15\left( {\dfrac{{4 - 2v}}{10}} \right) - 5v = - 2$
Multiplying both sides by 2-
$2 \times 3\left( {\dfrac{{4 - 2v}}{2}} \right) - 2 \times 5v = 2 \times - 2$
12 – 6v – 10v = -4
Or -16v = -16
Or v = 1
Putting the value of v in equation 3-
10u + 2(1) = 4
Or 10u + 2 = 4
Or 10u = 2
Or $u = \dfrac{1}{5}$
But we need to find x and y-
$
u = \dfrac{1}{{x + y}} \\
or{\text{ }}\dfrac{1}{5} = \dfrac{1}{{x + y}} \\
$
x + y = 5…… (5)
$
v = \dfrac{1}{{x - y}} \\
or{\text{ 1 = }}\dfrac{1}{{x - y}} \\
$
x – y = 1……. (6)
Adding equation 5 and 6, we get-
(x + y) + (x – y) = 6
2x = 6
Or x = 3
Putting the value of x in equation 5-
3 + y = 5
y = 2
So x = 3 and y = 2 is the solution of our given equations.
$\left( {viii} \right)\dfrac{1}{{3x + y}} + \dfrac{1}{{3x - y}} = \dfrac{3}{4};\dfrac{1}{{2\left( {3x + y} \right)}} - \dfrac{1}{{2\left( {3x - y} \right)}} = \dfrac{{ - 1}}{8}$
Solution- $\dfrac{1}{{3x + y}} + \dfrac{1}{{3x - y}} = \dfrac{3}{4}........(1)$
$\dfrac{1}{{2\left( {3x + y} \right)}} - \dfrac{1}{{2\left( {3x - y} \right)}} = \dfrac{{ - 1}}{8}$………. (2)
Let us assume $\dfrac{1}{{3x + y}} = u;\dfrac{1}{{3x - y}} = v$
So our equations become-
$u + v = \dfrac{3}{4}$
Or 4(u + v) = 3
Or 4u + 4v = 3………… (3)
And $\dfrac{1}{2}u - \dfrac{1}{2}v = \dfrac{{ - 1}}{8}$
Or $\dfrac{{u - v}}{2} = \dfrac{{ - 1}}{8}$
Or 4(u – v) = -1
Or 4u – 4v = -1………. (4)
Adding equation 3 and 4, we get
(4u + 4v) + (4u – 4v) = 3 + (-1)
Or 8u = 2
Or $u = \dfrac{1}{4}$
Putting the value of u in equation 3-
$4 \times \dfrac{1}{4} + 4v = 3$
Or 1 + 4v = 3
Or 4v = 2
Or $v = \dfrac{1}{2}$
Hence $u = \dfrac{1}{4},v = \dfrac{1}{2}$
But we need to find x and y-
We know $u = \dfrac{1}{{3x + y}}$
Or $\dfrac{1}{4} = \dfrac{1}{{3x + y}}$
Or 3x + y = 4………. (5)
$v = \dfrac{1}{{3x - y}}$
Or $\dfrac{1}{2} = \dfrac{1}{{3x - y}}$
Or 3x – y = 2……… (6)
Adding equation5 and equation 6-
(3x + y) + (3x – y) = 6
Or 6x = 6
Or x = 1
Putting the value of x in equation 5, we get-
3(1) + y = 4
Or 3 + y = 4
Or y = 4 – 3
Or y = 1
So x = 1 and y = 1 is the solution of the given equation.
Note- Here in order to solve these type of questions, we used a substitution method but we can use other methods also like elimination method and augmented matrices. Also one must know that there is a difference between the methods of solving linear equations in one variable and linear equations in two variables.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

