
Solve the following expression and convert it into most reducible form:
$\sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}}$
Answer
612.6k+ views
Hint: The number given in the question is an irrational number. Simplify it and convert it in the form of $\dfrac{p}{q}$. Then rationalise the dfraction to get the most reducible form.
Complete step by step answer:
From the question, we have to determine the value of $\sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}}$.
Let its value is $x$. Then we have:
$ \Rightarrow x = \sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}} .....(i)$
Simplifying it further, we’ll get:
\[
\Rightarrow x = \sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{\dfrac{{4 + \sqrt 3 }}{4}}} \\
\Rightarrow x = \sqrt 3 + \dfrac{{\dfrac{1}{1}}}{{\dfrac{{4 + \sqrt 3 }}{2}}} \\
\Rightarrow x = \sqrt 3 + \dfrac{2}{{4 + \sqrt 3 }} \\
\]
Cross multiplying \[\sqrt 3 \] with \[4 + \sqrt 3 \], we’ll get
\[
\Rightarrow x = \dfrac{{4\sqrt 3 + 3 + 2}}{{4 + \sqrt 3 }} \\
\Rightarrow x = \dfrac{{5 + 4\sqrt 3 }}{{4 + \sqrt 3 }} \\
\]
On rationalising the above expression, we will get:
\[ \Rightarrow x = \dfrac{{5 + 4\sqrt 3 }}{{4 + \sqrt 3 }} \times \dfrac{{4 - \sqrt 3 }}{{4 - \sqrt 3 }},\]
In the denominator, we are getting the form $\left( {a + b} \right)\left( {a - b} \right)$.
So using $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ and simultaneously multiplying numbers in numerator step by step, we’ll get
\[
\Rightarrow x = \dfrac{{20 - 5\sqrt 3 + 16\sqrt 3 - 4\sqrt 3 \times \sqrt 3 }}{{{{\left( 4 \right)}^2} - {{\left( {\sqrt 3 } \right)}^2}}}, \\
\Rightarrow x = \dfrac{{20 - 12 + 11\sqrt 3 }}{{16 - 3}}, \\
\Rightarrow x = \dfrac{{8 + 11\sqrt 3 }}{{13}} \\
\]
Substituting the value of $x$from equation $(i)$, we have:
$\sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}} = \dfrac{{8 + 11\sqrt 3 }}{{13}}$
Hence, the value of the above expression is \[\dfrac{{8 + 11\sqrt 3 }}{{13}}\].
Note: If in any expression, we are getting an irrational number in the denominator, we can always rationalise the number by multiplying and dividing with the conjugate of the denominator. In that case, the denominator will become a rational number.
Complete step by step answer:
From the question, we have to determine the value of $\sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}}$.
Let its value is $x$. Then we have:
$ \Rightarrow x = \sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}} .....(i)$
Simplifying it further, we’ll get:
\[
\Rightarrow x = \sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{\dfrac{{4 + \sqrt 3 }}{4}}} \\
\Rightarrow x = \sqrt 3 + \dfrac{{\dfrac{1}{1}}}{{\dfrac{{4 + \sqrt 3 }}{2}}} \\
\Rightarrow x = \sqrt 3 + \dfrac{2}{{4 + \sqrt 3 }} \\
\]
Cross multiplying \[\sqrt 3 \] with \[4 + \sqrt 3 \], we’ll get
\[
\Rightarrow x = \dfrac{{4\sqrt 3 + 3 + 2}}{{4 + \sqrt 3 }} \\
\Rightarrow x = \dfrac{{5 + 4\sqrt 3 }}{{4 + \sqrt 3 }} \\
\]
On rationalising the above expression, we will get:
\[ \Rightarrow x = \dfrac{{5 + 4\sqrt 3 }}{{4 + \sqrt 3 }} \times \dfrac{{4 - \sqrt 3 }}{{4 - \sqrt 3 }},\]
In the denominator, we are getting the form $\left( {a + b} \right)\left( {a - b} \right)$.
So using $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ and simultaneously multiplying numbers in numerator step by step, we’ll get
\[
\Rightarrow x = \dfrac{{20 - 5\sqrt 3 + 16\sqrt 3 - 4\sqrt 3 \times \sqrt 3 }}{{{{\left( 4 \right)}^2} - {{\left( {\sqrt 3 } \right)}^2}}}, \\
\Rightarrow x = \dfrac{{20 - 12 + 11\sqrt 3 }}{{16 - 3}}, \\
\Rightarrow x = \dfrac{{8 + 11\sqrt 3 }}{{13}} \\
\]
Substituting the value of $x$from equation $(i)$, we have:
$\sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}} = \dfrac{{8 + 11\sqrt 3 }}{{13}}$
Hence, the value of the above expression is \[\dfrac{{8 + 11\sqrt 3 }}{{13}}\].
Note: If in any expression, we are getting an irrational number in the denominator, we can always rationalise the number by multiplying and dividing with the conjugate of the denominator. In that case, the denominator will become a rational number.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

