
Solve the following expression and convert it into most reducible form:
$\sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}}$
Answer
596.1k+ views
Hint: The number given in the question is an irrational number. Simplify it and convert it in the form of $\dfrac{p}{q}$. Then rationalise the dfraction to get the most reducible form.
Complete step by step answer:
From the question, we have to determine the value of $\sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}}$.
Let its value is $x$. Then we have:
$ \Rightarrow x = \sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}} .....(i)$
Simplifying it further, we’ll get:
\[
\Rightarrow x = \sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{\dfrac{{4 + \sqrt 3 }}{4}}} \\
\Rightarrow x = \sqrt 3 + \dfrac{{\dfrac{1}{1}}}{{\dfrac{{4 + \sqrt 3 }}{2}}} \\
\Rightarrow x = \sqrt 3 + \dfrac{2}{{4 + \sqrt 3 }} \\
\]
Cross multiplying \[\sqrt 3 \] with \[4 + \sqrt 3 \], we’ll get
\[
\Rightarrow x = \dfrac{{4\sqrt 3 + 3 + 2}}{{4 + \sqrt 3 }} \\
\Rightarrow x = \dfrac{{5 + 4\sqrt 3 }}{{4 + \sqrt 3 }} \\
\]
On rationalising the above expression, we will get:
\[ \Rightarrow x = \dfrac{{5 + 4\sqrt 3 }}{{4 + \sqrt 3 }} \times \dfrac{{4 - \sqrt 3 }}{{4 - \sqrt 3 }},\]
In the denominator, we are getting the form $\left( {a + b} \right)\left( {a - b} \right)$.
So using $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ and simultaneously multiplying numbers in numerator step by step, we’ll get
\[
\Rightarrow x = \dfrac{{20 - 5\sqrt 3 + 16\sqrt 3 - 4\sqrt 3 \times \sqrt 3 }}{{{{\left( 4 \right)}^2} - {{\left( {\sqrt 3 } \right)}^2}}}, \\
\Rightarrow x = \dfrac{{20 - 12 + 11\sqrt 3 }}{{16 - 3}}, \\
\Rightarrow x = \dfrac{{8 + 11\sqrt 3 }}{{13}} \\
\]
Substituting the value of $x$from equation $(i)$, we have:
$\sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}} = \dfrac{{8 + 11\sqrt 3 }}{{13}}$
Hence, the value of the above expression is \[\dfrac{{8 + 11\sqrt 3 }}{{13}}\].
Note: If in any expression, we are getting an irrational number in the denominator, we can always rationalise the number by multiplying and dividing with the conjugate of the denominator. In that case, the denominator will become a rational number.
Complete step by step answer:
From the question, we have to determine the value of $\sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}}$.
Let its value is $x$. Then we have:
$ \Rightarrow x = \sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}} .....(i)$
Simplifying it further, we’ll get:
\[
\Rightarrow x = \sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{\dfrac{{4 + \sqrt 3 }}{4}}} \\
\Rightarrow x = \sqrt 3 + \dfrac{{\dfrac{1}{1}}}{{\dfrac{{4 + \sqrt 3 }}{2}}} \\
\Rightarrow x = \sqrt 3 + \dfrac{2}{{4 + \sqrt 3 }} \\
\]
Cross multiplying \[\sqrt 3 \] with \[4 + \sqrt 3 \], we’ll get
\[
\Rightarrow x = \dfrac{{4\sqrt 3 + 3 + 2}}{{4 + \sqrt 3 }} \\
\Rightarrow x = \dfrac{{5 + 4\sqrt 3 }}{{4 + \sqrt 3 }} \\
\]
On rationalising the above expression, we will get:
\[ \Rightarrow x = \dfrac{{5 + 4\sqrt 3 }}{{4 + \sqrt 3 }} \times \dfrac{{4 - \sqrt 3 }}{{4 - \sqrt 3 }},\]
In the denominator, we are getting the form $\left( {a + b} \right)\left( {a - b} \right)$.
So using $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ and simultaneously multiplying numbers in numerator step by step, we’ll get
\[
\Rightarrow x = \dfrac{{20 - 5\sqrt 3 + 16\sqrt 3 - 4\sqrt 3 \times \sqrt 3 }}{{{{\left( 4 \right)}^2} - {{\left( {\sqrt 3 } \right)}^2}}}, \\
\Rightarrow x = \dfrac{{20 - 12 + 11\sqrt 3 }}{{16 - 3}}, \\
\Rightarrow x = \dfrac{{8 + 11\sqrt 3 }}{{13}} \\
\]
Substituting the value of $x$from equation $(i)$, we have:
$\sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}} = \dfrac{{8 + 11\sqrt 3 }}{{13}}$
Hence, the value of the above expression is \[\dfrac{{8 + 11\sqrt 3 }}{{13}}\].
Note: If in any expression, we are getting an irrational number in the denominator, we can always rationalise the number by multiplying and dividing with the conjugate of the denominator. In that case, the denominator will become a rational number.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

