
Solve the following expression and convert it into most reducible form:
$\sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}}$
Answer
517.8k+ views
Hint: The number given in the question is an irrational number. Simplify it and convert it in the form of $\dfrac{p}{q}$. Then rationalise the dfraction to get the most reducible form.
Complete step by step answer:
From the question, we have to determine the value of $\sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}}$.
Let its value is $x$. Then we have:
$ \Rightarrow x = \sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}} .....(i)$
Simplifying it further, we’ll get:
\[
\Rightarrow x = \sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{\dfrac{{4 + \sqrt 3 }}{4}}} \\
\Rightarrow x = \sqrt 3 + \dfrac{{\dfrac{1}{1}}}{{\dfrac{{4 + \sqrt 3 }}{2}}} \\
\Rightarrow x = \sqrt 3 + \dfrac{2}{{4 + \sqrt 3 }} \\
\]
Cross multiplying \[\sqrt 3 \] with \[4 + \sqrt 3 \], we’ll get
\[
\Rightarrow x = \dfrac{{4\sqrt 3 + 3 + 2}}{{4 + \sqrt 3 }} \\
\Rightarrow x = \dfrac{{5 + 4\sqrt 3 }}{{4 + \sqrt 3 }} \\
\]
On rationalising the above expression, we will get:
\[ \Rightarrow x = \dfrac{{5 + 4\sqrt 3 }}{{4 + \sqrt 3 }} \times \dfrac{{4 - \sqrt 3 }}{{4 - \sqrt 3 }},\]
In the denominator, we are getting the form $\left( {a + b} \right)\left( {a - b} \right)$.
So using $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ and simultaneously multiplying numbers in numerator step by step, we’ll get
\[
\Rightarrow x = \dfrac{{20 - 5\sqrt 3 + 16\sqrt 3 - 4\sqrt 3 \times \sqrt 3 }}{{{{\left( 4 \right)}^2} - {{\left( {\sqrt 3 } \right)}^2}}}, \\
\Rightarrow x = \dfrac{{20 - 12 + 11\sqrt 3 }}{{16 - 3}}, \\
\Rightarrow x = \dfrac{{8 + 11\sqrt 3 }}{{13}} \\
\]
Substituting the value of $x$from equation $(i)$, we have:
$\sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}} = \dfrac{{8 + 11\sqrt 3 }}{{13}}$
Hence, the value of the above expression is \[\dfrac{{8 + 11\sqrt 3 }}{{13}}\].
Note: If in any expression, we are getting an irrational number in the denominator, we can always rationalise the number by multiplying and dividing with the conjugate of the denominator. In that case, the denominator will become a rational number.
Complete step by step answer:
From the question, we have to determine the value of $\sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}}$.
Let its value is $x$. Then we have:
$ \Rightarrow x = \sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}} .....(i)$
Simplifying it further, we’ll get:
\[
\Rightarrow x = \sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{\dfrac{{4 + \sqrt 3 }}{4}}} \\
\Rightarrow x = \sqrt 3 + \dfrac{{\dfrac{1}{1}}}{{\dfrac{{4 + \sqrt 3 }}{2}}} \\
\Rightarrow x = \sqrt 3 + \dfrac{2}{{4 + \sqrt 3 }} \\
\]
Cross multiplying \[\sqrt 3 \] with \[4 + \sqrt 3 \], we’ll get
\[
\Rightarrow x = \dfrac{{4\sqrt 3 + 3 + 2}}{{4 + \sqrt 3 }} \\
\Rightarrow x = \dfrac{{5 + 4\sqrt 3 }}{{4 + \sqrt 3 }} \\
\]
On rationalising the above expression, we will get:
\[ \Rightarrow x = \dfrac{{5 + 4\sqrt 3 }}{{4 + \sqrt 3 }} \times \dfrac{{4 - \sqrt 3 }}{{4 - \sqrt 3 }},\]
In the denominator, we are getting the form $\left( {a + b} \right)\left( {a - b} \right)$.
So using $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ and simultaneously multiplying numbers in numerator step by step, we’ll get
\[
\Rightarrow x = \dfrac{{20 - 5\sqrt 3 + 16\sqrt 3 - 4\sqrt 3 \times \sqrt 3 }}{{{{\left( 4 \right)}^2} - {{\left( {\sqrt 3 } \right)}^2}}}, \\
\Rightarrow x = \dfrac{{20 - 12 + 11\sqrt 3 }}{{16 - 3}}, \\
\Rightarrow x = \dfrac{{8 + 11\sqrt 3 }}{{13}} \\
\]
Substituting the value of $x$from equation $(i)$, we have:
$\sqrt 3 + \dfrac{{\dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{4}}} = \dfrac{{8 + 11\sqrt 3 }}{{13}}$
Hence, the value of the above expression is \[\dfrac{{8 + 11\sqrt 3 }}{{13}}\].
Note: If in any expression, we are getting an irrational number in the denominator, we can always rationalise the number by multiplying and dividing with the conjugate of the denominator. In that case, the denominator will become a rational number.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What are the public facilities provided by the government? Also explain each facility

Difference between mass and weight class 10 physics CBSE

Statistics in singular sense includes A Collection class 10 maths CBSE
