
Solve the following equations $x + y = 7 + \sqrt {xy} $, ${x^2} + {y^2} = 133 - xy$
$
A)x = 9,y = 4 \\
B)x = 4,y = 8 \\
C)X = 2,Y = 7 \\
D)X = 5,Y = 12 \\
$
Answer
612.6k+ views
Hint: Here to proceed with a solution we need to know the basic factorization of quadratic equations.
Complete step-by-step answer:
And we should also use a very basic algebra formula which will help us to solve the equation.
Let us consider
$x + y = 7 + \sqrt {xy} - - - - - - - - > (1)$
${x^2} + {y^2} = 133 - xy$
Now let us rewrite above equation
${x^2} + {y^2} + xy = 133 - - - - - - - > (2)$
By using the formula ${(a + b)^2} = {a^2} + {b^2} + 2ab$ we can rewrite the equation (2) as
${(x + y)^2} - xy = 133 - - - - - - - > (3)$
From equation (1) we know that $x + y = 7 + \sqrt {xy} $
Now on substituting (1) in (3) we get
$
{(7 + \sqrt {xy} )^2} - xy = 133 \\
\Rightarrow 49 + xy + 14\sqrt {xy} - xy = 133 \\
\Rightarrow 14\sqrt {xy} = 133 - 49 \\
\Rightarrow 14\sqrt {xy} = 84 \\
\Rightarrow \sqrt {xy} = \dfrac{{84}}{{14}} \\
\Rightarrow \sqrt {xy} = 6 \\
\Rightarrow xy = 36 \\
\Rightarrow y = \dfrac{{36}}{x} \\
$
Therefor here we got $y = \dfrac{{36}}{x}$
Let us expand equation (3) using the formula ${(a + b)^2} = {a^2} + {b^2} + 2ab$ and on further simplification we get it as
$
\Rightarrow {x^2} + {y^2} + 2xy - xy = 133 \\
\Rightarrow {x^2} + {y^2} + xy = 133 - - - - - - - (4) \\
$
On substituting y value in equation (4) we get
$ \Rightarrow {x^2} + {\left( {\dfrac{{36}}{x}} \right)^2} + x\left( {\dfrac{{36}}{x}} \right) = 133 - - - - - - > (5)$
Now again substituting y value in equation (2) we get
$ \Rightarrow {x^2} + {y^2} + xy = 133$
$ \Rightarrow {x^2} + {\left( {\dfrac{{36}}{x}} \right)^2} + x\left( {\dfrac{{36}}{x}} \right) =
133$ (Since x get cancelled in third term of equation)
$
\Rightarrow {x^2} + \dfrac{{1296}}{{{x^2}}} = 133 - 36 \\
\Rightarrow {x^2} + \dfrac{{1296}}{{{x^2}}} = 97 \\
$
Let us simplify it further
$
\Rightarrow {x^4} - 97{x^2} + 1296 = 0 \\
\Rightarrow {x^4} - 16{x^2} - 81{x^2} + 1296 = 0 \\
\Rightarrow {x^2}({x^2} - 16) - 81({x^2} - 16) = 0 \\
\Rightarrow ({x^2} - 16)({x^2} - 18) = 0 \\
\Rightarrow {x^2} = 16,81 \\
\Rightarrow x = \pm 4, \pm 9 \\
$
Here negative values of x are not true for equation (1)
So, x values are 4, 9
Now we know that
$y = \dfrac{{36}}{x}$
If $x = 4 \Rightarrow y = \dfrac{{36}}{4} = 9$
If $x = 9 \Rightarrow y = \dfrac{{36}}{9} = 4$
Therefore we can say that for values x=4, 9 the corresponding y values are y=9, 4
Hence the values from the options are x=9 and y=4.
Option A is the correct answer.
NOTE: Here we have used basic algebra formula to convert the equation (2) into proper format. Later using equation (1) we have rewritten the equation (3) and we got y value on further simplification. Again on further substitution we get the x value.
Complete step-by-step answer:
And we should also use a very basic algebra formula which will help us to solve the equation.
Let us consider
$x + y = 7 + \sqrt {xy} - - - - - - - - > (1)$
${x^2} + {y^2} = 133 - xy$
Now let us rewrite above equation
${x^2} + {y^2} + xy = 133 - - - - - - - > (2)$
By using the formula ${(a + b)^2} = {a^2} + {b^2} + 2ab$ we can rewrite the equation (2) as
${(x + y)^2} - xy = 133 - - - - - - - > (3)$
From equation (1) we know that $x + y = 7 + \sqrt {xy} $
Now on substituting (1) in (3) we get
$
{(7 + \sqrt {xy} )^2} - xy = 133 \\
\Rightarrow 49 + xy + 14\sqrt {xy} - xy = 133 \\
\Rightarrow 14\sqrt {xy} = 133 - 49 \\
\Rightarrow 14\sqrt {xy} = 84 \\
\Rightarrow \sqrt {xy} = \dfrac{{84}}{{14}} \\
\Rightarrow \sqrt {xy} = 6 \\
\Rightarrow xy = 36 \\
\Rightarrow y = \dfrac{{36}}{x} \\
$
Therefor here we got $y = \dfrac{{36}}{x}$
Let us expand equation (3) using the formula ${(a + b)^2} = {a^2} + {b^2} + 2ab$ and on further simplification we get it as
$
\Rightarrow {x^2} + {y^2} + 2xy - xy = 133 \\
\Rightarrow {x^2} + {y^2} + xy = 133 - - - - - - - (4) \\
$
On substituting y value in equation (4) we get
$ \Rightarrow {x^2} + {\left( {\dfrac{{36}}{x}} \right)^2} + x\left( {\dfrac{{36}}{x}} \right) = 133 - - - - - - > (5)$
Now again substituting y value in equation (2) we get
$ \Rightarrow {x^2} + {y^2} + xy = 133$
$ \Rightarrow {x^2} + {\left( {\dfrac{{36}}{x}} \right)^2} + x\left( {\dfrac{{36}}{x}} \right) =
133$ (Since x get cancelled in third term of equation)
$
\Rightarrow {x^2} + \dfrac{{1296}}{{{x^2}}} = 133 - 36 \\
\Rightarrow {x^2} + \dfrac{{1296}}{{{x^2}}} = 97 \\
$
Let us simplify it further
$
\Rightarrow {x^4} - 97{x^2} + 1296 = 0 \\
\Rightarrow {x^4} - 16{x^2} - 81{x^2} + 1296 = 0 \\
\Rightarrow {x^2}({x^2} - 16) - 81({x^2} - 16) = 0 \\
\Rightarrow ({x^2} - 16)({x^2} - 18) = 0 \\
\Rightarrow {x^2} = 16,81 \\
\Rightarrow x = \pm 4, \pm 9 \\
$
Here negative values of x are not true for equation (1)
So, x values are 4, 9
Now we know that
$y = \dfrac{{36}}{x}$
If $x = 4 \Rightarrow y = \dfrac{{36}}{4} = 9$
If $x = 9 \Rightarrow y = \dfrac{{36}}{9} = 4$
Therefore we can say that for values x=4, 9 the corresponding y values are y=9, 4
Hence the values from the options are x=9 and y=4.
Option A is the correct answer.
NOTE: Here we have used basic algebra formula to convert the equation (2) into proper format. Later using equation (1) we have rewritten the equation (3) and we got y value on further simplification. Again on further substitution we get the x value.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

