
Solve the following equation:
${x^2} - 2x - 8 = 0$
Answer
549.3k+ views
Hint: Factorize the quadratic equation by splitting the middle term into two different terms. Then take out the common factors from the first two terms and last two terms to get the equation in factored form. Finally put each of the factors to zero to determine the roots of the quadratic equation.
Complete step-by-step answer:
According to the question, we have been given a quadratic equation and we have to solve it and find its roots.
The given equation is:
$ \Rightarrow {x^2} - 2x - 8 = 0$
We will use factorization methods to solve this equation. So if we split the middle term into two terms such that the product of their coefficients is equal to the product of first and last coefficients of the quadratic equation, we’ll get:
$ \Rightarrow {x^2} - 4x + 2x - 8 = 0$
Taking $x$ common from first two terms and 2 common from last two terms, we’ll get:
$ \Rightarrow x\left( {x - 4} \right) + 2\left( {x - 4} \right) = 0$
Simplifying it further, we’ll get:
$ \Rightarrow \left( {x + 2} \right)\left( {x - 4} \right) = 0$
Putting both the factors equal to zero simultaneously, we’ll get:
$
\Rightarrow \left( {x + 2} \right) = 0{\text{ or }}\left( {x - 4} \right) = 0 \\
\Rightarrow x = - 2{\text{ or }}x = 4 \\
$
Thus the two roots of the given quadratic equation are $x = - 2$ and $x = 4$ respectively.
Additional Information:
For a quadratic equation to have real roots, its discriminant must be greater than or equal to zero.
Consider the given quadratic equation:
$ \Rightarrow y = a{x^2} + bx + c$
Discriminant of this quadratic equation is $D = {b^2} - 4ac$
Thus for the quadratic equation to have real roots, following condition must satisfy:
$
\Rightarrow D \geqslant 0{\text{ or}} \\
\Rightarrow {b^2} - 4ac \geqslant 0 \\
$
Note:
If we are facing any difficulty solving a quadratic equation using factorization method, we can also use a direct formula to find its roots. Let the quadratic equation be:
$ \Rightarrow y = a{x^2} + bx + c$
The formula to determine its roots is:
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step-by-step answer:
According to the question, we have been given a quadratic equation and we have to solve it and find its roots.
The given equation is:
$ \Rightarrow {x^2} - 2x - 8 = 0$
We will use factorization methods to solve this equation. So if we split the middle term into two terms such that the product of their coefficients is equal to the product of first and last coefficients of the quadratic equation, we’ll get:
$ \Rightarrow {x^2} - 4x + 2x - 8 = 0$
Taking $x$ common from first two terms and 2 common from last two terms, we’ll get:
$ \Rightarrow x\left( {x - 4} \right) + 2\left( {x - 4} \right) = 0$
Simplifying it further, we’ll get:
$ \Rightarrow \left( {x + 2} \right)\left( {x - 4} \right) = 0$
Putting both the factors equal to zero simultaneously, we’ll get:
$
\Rightarrow \left( {x + 2} \right) = 0{\text{ or }}\left( {x - 4} \right) = 0 \\
\Rightarrow x = - 2{\text{ or }}x = 4 \\
$
Thus the two roots of the given quadratic equation are $x = - 2$ and $x = 4$ respectively.
Additional Information:
For a quadratic equation to have real roots, its discriminant must be greater than or equal to zero.
Consider the given quadratic equation:
$ \Rightarrow y = a{x^2} + bx + c$
Discriminant of this quadratic equation is $D = {b^2} - 4ac$
Thus for the quadratic equation to have real roots, following condition must satisfy:
$
\Rightarrow D \geqslant 0{\text{ or}} \\
\Rightarrow {b^2} - 4ac \geqslant 0 \\
$
Note:
If we are facing any difficulty solving a quadratic equation using factorization method, we can also use a direct formula to find its roots. Let the quadratic equation be:
$ \Rightarrow y = a{x^2} + bx + c$
The formula to determine its roots is:
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

