
Solve the following equation that has equal roots:
${x^6} - 2{x^5} - 4{x^4} + 12{x^3} - 3{x^2} - 18x + 18 = 0$
Answer
519.6k+ views
Hint: Here we will simplify the given equation into simpler form and by using the determinant formula the roots can be calculated.
Complete step-by-step answer:
Given equation is ${x^6} - 2{x^5} - 4{x^4} + 12{x^3} - 3{x^2} - 18x + 18 = 0$
Let $f(x) = {x^6} - 2{x^5} - 4{x^4} + 12{x^3} - 3{x^2} - 18x + 18$
Differentiate above equation w.r.t x
$ \Rightarrow \dfrac{d}{{dx}}f(x) = f'(x) = 6{x^5} - 10{x^4} - 16{x^3} + 36{x^2} - 6x - 18$
Now factorize f(x)
$
\Rightarrow f(x) = {({x^2} - 3)^2}({x^2} - 2x + 2) = 0 \\
{({x^2} - 3)^2} = 0{\text{ & }}({x^2} - 2x + 2) = 0 \\
\Rightarrow x = \pm \sqrt 3 \\
$
Second equation is quadratic equation so apply quadratic formula $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$
\Rightarrow \dfrac{{2 \pm \sqrt {4 - 8} }}{2} = \dfrac{{2 \pm \sqrt {4{i^2}} }}{2}[\because {i^2} = - 1] \\
\Rightarrow \dfrac{{2 \pm 2i}}{2} = 1 \pm i \\
$
Put $x = \sqrt 3 $ in $f'(x)$
$
\Rightarrow f'(x) = 6{(\sqrt 3 )^5} - 10{(\sqrt 3 )^4} - 16{(\sqrt 3 )^3} + 36{(\sqrt 3 )^2} - 6\sqrt 3 - 18 \\
\Rightarrow f'(x) = 54\sqrt 3 - 90 - 48\sqrt 3 + 108 - 6\sqrt 3 - 18 \\
\Rightarrow f'(x) = 0 \\
$
Put $x = - \sqrt 3 $ in $f'(x)$
$
\Rightarrow f'(x) = 6{( - \sqrt 3 )^5} - 10{( - \sqrt 3 )^4} - 16{( - \sqrt 3 )^3} + 36{( - \sqrt 3 )^2} + 6\sqrt 3 - 18 \\
\Rightarrow f'(x) = - 54\sqrt 3 - 90 + 48\sqrt 3 + 108 + 6\sqrt 3 - 18 \\
\Rightarrow f'(x) = 0 \\
$
Therefore, ${({x^2} - 3)^2}$ is the HCF of f(x) and $f'(x)$.
Hence $x = \pm \sqrt 3 $ is a double root of f(x) =0
Given equation has equal roots and the roots of the equation have $x = \pm \sqrt 3 ,1 \pm i$.
So this is your desired answer.
Note: In this type of question if the equation has equal roots then its differentiation is zero at that root i.e the equation has a double root.
Complete step-by-step answer:
Given equation is ${x^6} - 2{x^5} - 4{x^4} + 12{x^3} - 3{x^2} - 18x + 18 = 0$
Let $f(x) = {x^6} - 2{x^5} - 4{x^4} + 12{x^3} - 3{x^2} - 18x + 18$
Differentiate above equation w.r.t x
$ \Rightarrow \dfrac{d}{{dx}}f(x) = f'(x) = 6{x^5} - 10{x^4} - 16{x^3} + 36{x^2} - 6x - 18$
Now factorize f(x)
$
\Rightarrow f(x) = {({x^2} - 3)^2}({x^2} - 2x + 2) = 0 \\
{({x^2} - 3)^2} = 0{\text{ & }}({x^2} - 2x + 2) = 0 \\
\Rightarrow x = \pm \sqrt 3 \\
$
Second equation is quadratic equation so apply quadratic formula $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$
\Rightarrow \dfrac{{2 \pm \sqrt {4 - 8} }}{2} = \dfrac{{2 \pm \sqrt {4{i^2}} }}{2}[\because {i^2} = - 1] \\
\Rightarrow \dfrac{{2 \pm 2i}}{2} = 1 \pm i \\
$
Put $x = \sqrt 3 $ in $f'(x)$
$
\Rightarrow f'(x) = 6{(\sqrt 3 )^5} - 10{(\sqrt 3 )^4} - 16{(\sqrt 3 )^3} + 36{(\sqrt 3 )^2} - 6\sqrt 3 - 18 \\
\Rightarrow f'(x) = 54\sqrt 3 - 90 - 48\sqrt 3 + 108 - 6\sqrt 3 - 18 \\
\Rightarrow f'(x) = 0 \\
$
Put $x = - \sqrt 3 $ in $f'(x)$
$
\Rightarrow f'(x) = 6{( - \sqrt 3 )^5} - 10{( - \sqrt 3 )^4} - 16{( - \sqrt 3 )^3} + 36{( - \sqrt 3 )^2} + 6\sqrt 3 - 18 \\
\Rightarrow f'(x) = - 54\sqrt 3 - 90 + 48\sqrt 3 + 108 + 6\sqrt 3 - 18 \\
\Rightarrow f'(x) = 0 \\
$
Therefore, ${({x^2} - 3)^2}$ is the HCF of f(x) and $f'(x)$.
Hence $x = \pm \sqrt 3 $ is a double root of f(x) =0
Given equation has equal roots and the roots of the equation have $x = \pm \sqrt 3 ,1 \pm i$.
So this is your desired answer.
Note: In this type of question if the equation has equal roots then its differentiation is zero at that root i.e the equation has a double root.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
