
Solve the following equation that has equal roots:
${x^6} - 2{x^5} - 4{x^4} + 12{x^3} - 3{x^2} - 18x + 18 = 0$
Answer
603k+ views
Hint: Here we will simplify the given equation into simpler form and by using the determinant formula the roots can be calculated.
Complete step-by-step answer:
Given equation is ${x^6} - 2{x^5} - 4{x^4} + 12{x^3} - 3{x^2} - 18x + 18 = 0$
Let $f(x) = {x^6} - 2{x^5} - 4{x^4} + 12{x^3} - 3{x^2} - 18x + 18$
Differentiate above equation w.r.t x
$ \Rightarrow \dfrac{d}{{dx}}f(x) = f'(x) = 6{x^5} - 10{x^4} - 16{x^3} + 36{x^2} - 6x - 18$
Now factorize f(x)
$
\Rightarrow f(x) = {({x^2} - 3)^2}({x^2} - 2x + 2) = 0 \\
{({x^2} - 3)^2} = 0{\text{ & }}({x^2} - 2x + 2) = 0 \\
\Rightarrow x = \pm \sqrt 3 \\
$
Second equation is quadratic equation so apply quadratic formula $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$
\Rightarrow \dfrac{{2 \pm \sqrt {4 - 8} }}{2} = \dfrac{{2 \pm \sqrt {4{i^2}} }}{2}[\because {i^2} = - 1] \\
\Rightarrow \dfrac{{2 \pm 2i}}{2} = 1 \pm i \\
$
Put $x = \sqrt 3 $ in $f'(x)$
$
\Rightarrow f'(x) = 6{(\sqrt 3 )^5} - 10{(\sqrt 3 )^4} - 16{(\sqrt 3 )^3} + 36{(\sqrt 3 )^2} - 6\sqrt 3 - 18 \\
\Rightarrow f'(x) = 54\sqrt 3 - 90 - 48\sqrt 3 + 108 - 6\sqrt 3 - 18 \\
\Rightarrow f'(x) = 0 \\
$
Put $x = - \sqrt 3 $ in $f'(x)$
$
\Rightarrow f'(x) = 6{( - \sqrt 3 )^5} - 10{( - \sqrt 3 )^4} - 16{( - \sqrt 3 )^3} + 36{( - \sqrt 3 )^2} + 6\sqrt 3 - 18 \\
\Rightarrow f'(x) = - 54\sqrt 3 - 90 + 48\sqrt 3 + 108 + 6\sqrt 3 - 18 \\
\Rightarrow f'(x) = 0 \\
$
Therefore, ${({x^2} - 3)^2}$ is the HCF of f(x) and $f'(x)$.
Hence $x = \pm \sqrt 3 $ is a double root of f(x) =0
Given equation has equal roots and the roots of the equation have $x = \pm \sqrt 3 ,1 \pm i$.
So this is your desired answer.
Note: In this type of question if the equation has equal roots then its differentiation is zero at that root i.e the equation has a double root.
Complete step-by-step answer:
Given equation is ${x^6} - 2{x^5} - 4{x^4} + 12{x^3} - 3{x^2} - 18x + 18 = 0$
Let $f(x) = {x^6} - 2{x^5} - 4{x^4} + 12{x^3} - 3{x^2} - 18x + 18$
Differentiate above equation w.r.t x
$ \Rightarrow \dfrac{d}{{dx}}f(x) = f'(x) = 6{x^5} - 10{x^4} - 16{x^3} + 36{x^2} - 6x - 18$
Now factorize f(x)
$
\Rightarrow f(x) = {({x^2} - 3)^2}({x^2} - 2x + 2) = 0 \\
{({x^2} - 3)^2} = 0{\text{ & }}({x^2} - 2x + 2) = 0 \\
\Rightarrow x = \pm \sqrt 3 \\
$
Second equation is quadratic equation so apply quadratic formula $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$
\Rightarrow \dfrac{{2 \pm \sqrt {4 - 8} }}{2} = \dfrac{{2 \pm \sqrt {4{i^2}} }}{2}[\because {i^2} = - 1] \\
\Rightarrow \dfrac{{2 \pm 2i}}{2} = 1 \pm i \\
$
Put $x = \sqrt 3 $ in $f'(x)$
$
\Rightarrow f'(x) = 6{(\sqrt 3 )^5} - 10{(\sqrt 3 )^4} - 16{(\sqrt 3 )^3} + 36{(\sqrt 3 )^2} - 6\sqrt 3 - 18 \\
\Rightarrow f'(x) = 54\sqrt 3 - 90 - 48\sqrt 3 + 108 - 6\sqrt 3 - 18 \\
\Rightarrow f'(x) = 0 \\
$
Put $x = - \sqrt 3 $ in $f'(x)$
$
\Rightarrow f'(x) = 6{( - \sqrt 3 )^5} - 10{( - \sqrt 3 )^4} - 16{( - \sqrt 3 )^3} + 36{( - \sqrt 3 )^2} + 6\sqrt 3 - 18 \\
\Rightarrow f'(x) = - 54\sqrt 3 - 90 + 48\sqrt 3 + 108 + 6\sqrt 3 - 18 \\
\Rightarrow f'(x) = 0 \\
$
Therefore, ${({x^2} - 3)^2}$ is the HCF of f(x) and $f'(x)$.
Hence $x = \pm \sqrt 3 $ is a double root of f(x) =0
Given equation has equal roots and the roots of the equation have $x = \pm \sqrt 3 ,1 \pm i$.
So this is your desired answer.
Note: In this type of question if the equation has equal roots then its differentiation is zero at that root i.e the equation has a double root.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

