
Solve the following equation and find the value of x?
$\dfrac{{x + 3}}{{x - 1}} > 0,x \in R$
Answer
617.1k+ views
Hint:To solve this type of question first we have to define the function that means we have to check where the function is defined and in that range only we have to solve. Here we have to find a range of x for which the fraction is greater than 0.
Complete step-by-step answer:
For defining this question, the denominator should not be equal to 0.
$
x - 1 \ne 0 \\
x \ne 1 \\
$
We have to find a range of x for which this fraction is positive so if numerator and denominator both have the same sign then it will always be greater than 0.
Case 1. When both numerator and denominator both are positive.
$
x + 3 > 0 \\
= x > - 3 \\
$
And
$
x - 1 > 0 \\
= x > 1 \\
$
We have to take the range of x for which both conditions are satisfied. That means intersection of both x
So, $x \in \left( {1,\infty } \right)$
Case 2. When both numerator and denominator are negative
$x + 3 < 0 \Rightarrow x < - 3$
And
$x - 1 < 0 \Rightarrow x < 1$
Now again we have to satisfy both the conditions that means take intersection of both.
$x \in \left( { - \infty , - 3} \right)$
Hence final answer of function where it is greater than 0 is
$x \in \left( { - \infty , - 3} \right) \cup \left( {1,\infty } \right)$
Note: Whenever we get this type of question the key concept of solving is we have to find a range where both numerator and denominator is positive and both is negative then we have to take intersection so that both the function should satisfy that condition. And also care about where function is defined or not.
Complete step-by-step answer:
For defining this question, the denominator should not be equal to 0.
$
x - 1 \ne 0 \\
x \ne 1 \\
$
We have to find a range of x for which this fraction is positive so if numerator and denominator both have the same sign then it will always be greater than 0.
Case 1. When both numerator and denominator both are positive.
$
x + 3 > 0 \\
= x > - 3 \\
$
And
$
x - 1 > 0 \\
= x > 1 \\
$
We have to take the range of x for which both conditions are satisfied. That means intersection of both x
So, $x \in \left( {1,\infty } \right)$
Case 2. When both numerator and denominator are negative
$x + 3 < 0 \Rightarrow x < - 3$
And
$x - 1 < 0 \Rightarrow x < 1$
Now again we have to satisfy both the conditions that means take intersection of both.
$x \in \left( { - \infty , - 3} \right)$
Hence final answer of function where it is greater than 0 is
$x \in \left( { - \infty , - 3} \right) \cup \left( {1,\infty } \right)$
Note: Whenever we get this type of question the key concept of solving is we have to find a range where both numerator and denominator is positive and both is negative then we have to take intersection so that both the function should satisfy that condition. And also care about where function is defined or not.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

