
Solve the following equation:
\[{4^x} - {10.2^{x - 1}} = 24\]
Answer
570.9k+ views
Hint:
The approach that can be followed for solving such kind of question is to try express the terms containing a variable in their powers as in their base powers and then searching for the powers with same base and substituting it as a different variable making it an equation which can be solved and the value of x can be calculated further. Particularly in this question firstly express \[{4^x}\]in the powers of the base 2 that is \[{\left( {{2^2}} \right)^x}\]and later breaking \[{2^{x - 1}}\]in fractional form that is \[\dfrac{{{2^x}}}{2}\]simplifying the term and later on substituting \[{2^x}\] as t and later further solving the equation in terms of t for the values of t and further comparing t and \[{2^x}\] for the desired solution that we want.
Complete step by step solution:
Now given equation is
\[{4^x} - {10.2^{x - 1}} = 24\]
Now expressing \[{4^x}\]in the powers of the base 2 that is \[{\left( {{2^2}} \right)^x}\] we get -
\[{({2^x})^2} - {10.2^{x - 1}} = 24\]
Also breaking down \[{2^{x - 1}}\]in the fractional form that is \[\dfrac{{{2^x}}}{2}\]the above equation becomes-
\[{({2^x})^2} - 10.\dfrac{{{2^x}}}{2} = 24\]
Now simplifying the above equation we get –
\[{({2^x})^2} - {5.2^x} = 24\]
Now substituting \[{2^x}\]as t in above equation we get-
\[{t^2} - 5.t = 24\]
\[{t^2} - 5.t - 24 = 0\]
\[{t^2} - 8t + 3t - 24 = 0\]
\[(t + 3)(t - 8) = 0\]
\[(t - 8) = 0\] and \[(t + 3) = 0\]
So the resulting values of t are \[ = - 3\]and \[ = 8\]
Also we have substituted t as \[{2^x}\]
So \[{2^x}\]\[ = - 3\]here x is not real
And also \[{2^x}\]\[ = 8\]here
\[{2^x} = {2^3}\] as bases are same comparing the powers as the rule says
\[
{t^y} = {t^b} \\
y = b \\
\]
\[x = 3\]
So x is equal to \[3\]
Note:
Some common mistakes that a person generally make is fetching the constant in the simpler terms which makes the solution of such kind of questions more complicated following the general rule that is to try to express the terms containing x in their powers as in their base powers and then searching for the powers with same base and substituting it as a different variable making it an equation which can be solved and the value of x can be calculated further this kind of approach can be applied to wider range of questions like this and is much easier to execute.
The approach that can be followed for solving such kind of question is to try express the terms containing a variable in their powers as in their base powers and then searching for the powers with same base and substituting it as a different variable making it an equation which can be solved and the value of x can be calculated further. Particularly in this question firstly express \[{4^x}\]in the powers of the base 2 that is \[{\left( {{2^2}} \right)^x}\]and later breaking \[{2^{x - 1}}\]in fractional form that is \[\dfrac{{{2^x}}}{2}\]simplifying the term and later on substituting \[{2^x}\] as t and later further solving the equation in terms of t for the values of t and further comparing t and \[{2^x}\] for the desired solution that we want.
Complete step by step solution:
Now given equation is
\[{4^x} - {10.2^{x - 1}} = 24\]
Now expressing \[{4^x}\]in the powers of the base 2 that is \[{\left( {{2^2}} \right)^x}\] we get -
\[{({2^x})^2} - {10.2^{x - 1}} = 24\]
Also breaking down \[{2^{x - 1}}\]in the fractional form that is \[\dfrac{{{2^x}}}{2}\]the above equation becomes-
\[{({2^x})^2} - 10.\dfrac{{{2^x}}}{2} = 24\]
Now simplifying the above equation we get –
\[{({2^x})^2} - {5.2^x} = 24\]
Now substituting \[{2^x}\]as t in above equation we get-
\[{t^2} - 5.t = 24\]
\[{t^2} - 5.t - 24 = 0\]
\[{t^2} - 8t + 3t - 24 = 0\]
\[(t + 3)(t - 8) = 0\]
\[(t - 8) = 0\] and \[(t + 3) = 0\]
So the resulting values of t are \[ = - 3\]and \[ = 8\]
Also we have substituted t as \[{2^x}\]
So \[{2^x}\]\[ = - 3\]here x is not real
And also \[{2^x}\]\[ = 8\]here
\[{2^x} = {2^3}\] as bases are same comparing the powers as the rule says
\[
{t^y} = {t^b} \\
y = b \\
\]
\[x = 3\]
So x is equal to \[3\]
Note:
Some common mistakes that a person generally make is fetching the constant in the simpler terms which makes the solution of such kind of questions more complicated following the general rule that is to try to express the terms containing x in their powers as in their base powers and then searching for the powers with same base and substituting it as a different variable making it an equation which can be solved and the value of x can be calculated further this kind of approach can be applied to wider range of questions like this and is much easier to execute.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

