
Solve the following complex expression
$\dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( \sin \theta +i\cos \theta \right)}^{5}}}$
(a) $\cos 9\theta -i\sin 9\theta $
(b) $\cos 9\theta +i\sin 9\theta $
(c) $\sin 9\theta -i\cos 9\theta $
(d) $\sin 9\theta +i\cos 9\theta $
Answer
520.8k+ views
Hint: Any complex number that can be represented in the form $\cos \theta +i\sin \theta $ can be also written as ${{e}^{i\theta }}$. This form of the complex number is also called the euler form of the complex number. Using this euler form, we can solve this question.
Complete step-by-step answer:
Before proceeding with the question, we must know the concept and the formula that will be required to solve this question.
Any complex number that can be written in the form of $\cos \theta +i\sin \theta $ can be also expressed in the euler form. From the euler form, we can write the complex number $\cos \theta +i\sin \theta ={{e}^{i\theta }}$ . . . . . . . . (1)
Also, in the complex number, we have a formula ${{i}^{2}}=-1$ . . . . . . . . . (2).
In the question, we have to evaluate $\dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( \sin \theta +i\cos \theta \right)}^{5}}}$.
$\dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( \sin \theta +i\cos \theta \right)}^{5}}}$can be also written as,
\[\begin{align}
& \dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( i \right)}^{5}}{{\left( \dfrac{1}{i}\sin \theta +\cos \theta \right)}^{5}}} \\
& \Rightarrow \dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( i \right)}^{4}}\left( i \right){{\left( \dfrac{i}{{{i}^{2}}}\sin \theta +\cos \theta \right)}^{5}}} \\
& \Rightarrow \dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( {{i}^{2}} \right)}^{2}}\left( i \right){{\left( \dfrac{i}{{{i}^{2}}}\sin \theta +\cos \theta \right)}^{5}}} \\
\end{align}\]
Using formula (2), we can write ${{i}^{2}}=-1$. So, we get,
\[\begin{align}
& \dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( -1 \right)}^{2}}\left( i \right){{\left( -i\sin \theta +\cos \theta \right)}^{5}}} \\
& \Rightarrow \dfrac{1}{i}\dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( -i\sin \theta +\cos \theta \right)}^{5}}} \\
& \Rightarrow \dfrac{i}{{{i}^{2}}}\dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( -i\sin \theta +\cos \theta \right)}^{5}}} \\
& \Rightarrow -i\dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( \cos \theta -i\sin \theta \right)}^{5}}} \\
\end{align}\]
From (1), we can write $\cos \theta +i\sin \theta ={{e}^{i\theta }}$ and $\cos \theta -i\sin \theta ={{e}^{-i\theta }}$. So, we get,
\[\begin{align}
& -i\dfrac{{{\left( {{e}^{i\theta }} \right)}^{4}}}{{{\left( {{e}^{-i\theta }} \right)}^{5}}} \\
& \Rightarrow -i\dfrac{{{\left( {{e}^{i\theta }} \right)}^{4}}}{{{\left( {{e}^{i\theta }} \right)}^{-5}}} \\
\end{align}\]
There is a rule of exponents from which we can say $\dfrac{{{a}^{b}}}{{{a}^{c}}}={{a}^{b-c}}$. Using this formula in the above expression, we get,
$\begin{align}
& -i{{\left( {{e}^{i\theta }} \right)}^{4-\left( -5 \right)}} \\
& \Rightarrow -i{{\left( {{e}^{i\theta }} \right)}^{9}} \\
& \Rightarrow -i\left( {{e}^{i9\theta }} \right) \\
\end{align}$
Converting this euler form to the complex number in the form of $\cos \theta $ and $\sin \theta $, we can get,
\[\begin{align}
& -i\left( {{e}^{i9\theta }} \right)=-i\left( \cos 9\theta +i\sin 9\theta \right) \\
& \Rightarrow -i\cos 9\theta -{{i}^{2}}\sin 9\theta \\
& \Rightarrow -i\cos 9\theta -\left( -1 \right)\sin 9\theta \\
& \Rightarrow \sin 9\theta -i\cos 9\theta \\
\end{align}\]
Hence, the answer is option (c).
Note: There is a possibility that one may commit a mistake while applying the formula $\dfrac{{{a}^{b}}}{{{a}^{c}}}={{a}^{b-c}}$ on the expression \[\dfrac{{{\left( {{e}^{i\theta }} \right)}^{4}}}{{{\left( {{e}^{i\theta }} \right)}^{-5}}}\]. It is possible that one may write the expression \[\dfrac{{{\left( {{e}^{i\theta }} \right)}^{4}}}{{{\left( {{e}^{i\theta }} \right)}^{-5}}}\] as \[{{\left( {{e}^{i\theta }} \right)}^{4-5}}\] instead of \[{{\left( {{e}^{i\theta }} \right)}^{4-\left( -5 \right)}}\] which will lead us to an incorrect answer. So, one must be careful while applying such formulas specially on those terms which are having a negative exponent.
Complete step-by-step answer:
Before proceeding with the question, we must know the concept and the formula that will be required to solve this question.
Any complex number that can be written in the form of $\cos \theta +i\sin \theta $ can be also expressed in the euler form. From the euler form, we can write the complex number $\cos \theta +i\sin \theta ={{e}^{i\theta }}$ . . . . . . . . (1)
Also, in the complex number, we have a formula ${{i}^{2}}=-1$ . . . . . . . . . (2).
In the question, we have to evaluate $\dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( \sin \theta +i\cos \theta \right)}^{5}}}$.
$\dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( \sin \theta +i\cos \theta \right)}^{5}}}$can be also written as,
\[\begin{align}
& \dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( i \right)}^{5}}{{\left( \dfrac{1}{i}\sin \theta +\cos \theta \right)}^{5}}} \\
& \Rightarrow \dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( i \right)}^{4}}\left( i \right){{\left( \dfrac{i}{{{i}^{2}}}\sin \theta +\cos \theta \right)}^{5}}} \\
& \Rightarrow \dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( {{i}^{2}} \right)}^{2}}\left( i \right){{\left( \dfrac{i}{{{i}^{2}}}\sin \theta +\cos \theta \right)}^{5}}} \\
\end{align}\]
Using formula (2), we can write ${{i}^{2}}=-1$. So, we get,
\[\begin{align}
& \dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( -1 \right)}^{2}}\left( i \right){{\left( -i\sin \theta +\cos \theta \right)}^{5}}} \\
& \Rightarrow \dfrac{1}{i}\dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( -i\sin \theta +\cos \theta \right)}^{5}}} \\
& \Rightarrow \dfrac{i}{{{i}^{2}}}\dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( -i\sin \theta +\cos \theta \right)}^{5}}} \\
& \Rightarrow -i\dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( \cos \theta -i\sin \theta \right)}^{5}}} \\
\end{align}\]
From (1), we can write $\cos \theta +i\sin \theta ={{e}^{i\theta }}$ and $\cos \theta -i\sin \theta ={{e}^{-i\theta }}$. So, we get,
\[\begin{align}
& -i\dfrac{{{\left( {{e}^{i\theta }} \right)}^{4}}}{{{\left( {{e}^{-i\theta }} \right)}^{5}}} \\
& \Rightarrow -i\dfrac{{{\left( {{e}^{i\theta }} \right)}^{4}}}{{{\left( {{e}^{i\theta }} \right)}^{-5}}} \\
\end{align}\]
There is a rule of exponents from which we can say $\dfrac{{{a}^{b}}}{{{a}^{c}}}={{a}^{b-c}}$. Using this formula in the above expression, we get,
$\begin{align}
& -i{{\left( {{e}^{i\theta }} \right)}^{4-\left( -5 \right)}} \\
& \Rightarrow -i{{\left( {{e}^{i\theta }} \right)}^{9}} \\
& \Rightarrow -i\left( {{e}^{i9\theta }} \right) \\
\end{align}$
Converting this euler form to the complex number in the form of $\cos \theta $ and $\sin \theta $, we can get,
\[\begin{align}
& -i\left( {{e}^{i9\theta }} \right)=-i\left( \cos 9\theta +i\sin 9\theta \right) \\
& \Rightarrow -i\cos 9\theta -{{i}^{2}}\sin 9\theta \\
& \Rightarrow -i\cos 9\theta -\left( -1 \right)\sin 9\theta \\
& \Rightarrow \sin 9\theta -i\cos 9\theta \\
\end{align}\]
Hence, the answer is option (c).
Note: There is a possibility that one may commit a mistake while applying the formula $\dfrac{{{a}^{b}}}{{{a}^{c}}}={{a}^{b-c}}$ on the expression \[\dfrac{{{\left( {{e}^{i\theta }} \right)}^{4}}}{{{\left( {{e}^{i\theta }} \right)}^{-5}}}\]. It is possible that one may write the expression \[\dfrac{{{\left( {{e}^{i\theta }} \right)}^{4}}}{{{\left( {{e}^{i\theta }} \right)}^{-5}}}\] as \[{{\left( {{e}^{i\theta }} \right)}^{4-5}}\] instead of \[{{\left( {{e}^{i\theta }} \right)}^{4-\left( -5 \right)}}\] which will lead us to an incorrect answer. So, one must be careful while applying such formulas specially on those terms which are having a negative exponent.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
