
Solve the equation: $(y log x - 1)ydx = xdy$
Answer
595.2k+ views
- Hint: This is a linear differential equation. We can solve this by bringing it in the form-
$\dfrac{{dy}}{{dx}} + yP\left( {\text{x}} \right) = {\text{Q}}\left( {\text{x}} \right)$
Here P(x) and Q(x) are functions in x. After bringing the equation in this form, we find and multiply it with the integrating factor which is given by-
${\text{I}}.{\text{F}} = {{\text{e}}^{\smallint {\text{P}}\left( {\text{x}} \right)dx}}$
The equation can then be written in the form-
${\text{y}}\left( {{\text{I}}.{\text{F}}} \right) = \smallint {\text{Q}}\left( {\text{x}} \right).\left( {{\text{I}}.{\text{F}}} \right) + {\text{C}}$
Complete step-by-step solution -
We have been given that-
$(ylogx - 1)ydx = xdy$
Dividing the equation by dx, we get-
$\begin{align}
& {\text{x}}\dfrac{{dy}}{{dx}} = \left( {{{\text{y}}^2}logx - {\text{y}}} \right) \\
& \dfrac{{dy}}{{dx}} = \dfrac{{{{\text{y}}^2}}}{{\text{x}}}logx - \dfrac{{\text{y}}}{{\text{x}}} \\
& \dfrac{{dy}}{{dx}} + \dfrac{{\text{y}}}{{\text{x}}} = {{\text{y}}^2}\dfrac{{logx}}{{\text{x}}} \\
\end{align} $
We know that the term Q(x) should be independent of y, so we need to divide the equation with $y^2$ as-
$\dfrac{1}{{{{\text{y}}^2}}}\dfrac{{dy}}{{dx}} + \dfrac{1}{{xy}} = \dfrac{{logx}}{{\text{x}}}$
To simplify further, we need to make a substitution as-
${\text{t}} = \dfrac{1}{{\text{y}}}$
$dt = - \dfrac{1}{{{{\text{y}}^2}}}dy$
Substituting these values in the equation we get-
$ - \dfrac{{dt}}{{dx}} + \dfrac{{\text{t}}}{{\text{x}}} = \dfrac{{logx}}{{\text{x}}}$
$\dfrac{{dt}}{{dx}} - \dfrac{{\text{t}}}{{\text{x}}} = - \dfrac{{logx}}{{\text{x}}}$
By comparison, we can clearly see that-
${\text{P}}\left( {\text{x}} \right) = - \dfrac{1}{{\text{x}}}\;and\;{\text{Q}}\left( {\text{x}} \right) = - \dfrac{{logx}}{{\text{x}}}$
We can find the integrating factor as-
$\begin{align}
&{\text{I}}.{\text{F}} = {{\text{e}}^{\smallint {\text{P}}\left( {\text{x}} \right)dx}} = {{\text{e}}^{\smallint - \dfrac{1}{{\text{x}}}dx}} = {{\text{e}}^{ - logx}} = {{\text{e}}^{\log \left( {\dfrac{1}{{\text{x}}}} \right)}} \\
& We\;know\;that\;{{\text{e}}^{logx}} = {\text{x}}\;so,\; \\
& {\text{I}}.{\text{F}} = {{\text{e}}^{\log \left( {\dfrac{1}{{\text{x}}}} \right)}} = \dfrac{1}{{\text{x}}} \\
\end{align} $
The equation can now be written as-
${\text{y}}\left( {{\text{I}}.{\text{F}}} \right) = \smallint {\text{Q}}\left( {\text{x}} \right).\left( {{\text{I}}.{\text{F}}} \right) + {\text{C}}$
${\text{t}}\left( {\dfrac{1}{{\text{x}}}} \right) = \smallint \left( { - \dfrac{{logx}}{{\text{x}}}} \right)\left( {\dfrac{1}{{\text{x}}}} \right)dx$
$\dfrac{{\text{t}}}{{\text{x}}} = - \smallint \dfrac{{logx}}{{{{\text{x}}^2}}}dx$
We will need to use integration by parts to further solve this problem-
$\smallint {\text{u}}\left( {\text{x}} \right){\text{v}}\left( {\text{x}} \right)dx = \left[ {{\text{v}}\left( {\text{x}} \right).\smallint {\text{u}}\left( {\text{x}} \right)dx} \right] - \smallint \left( {{\text{v}}'\left( {\text{x}} \right).\smallint {\text{u}}\left( {\text{x}} \right)dx} \right)dx$
We will assume that v(x) = logx and u(x) = x-2
$\begin{align}
&= \smallint \dfrac{{logx}}{{{{\text{x}}^2}}}dx \\
&= logx\smallint \dfrac{1}{{{{\text{x}}^2}}}dx - \smallint \left( {\dfrac{{d\left( {logx} \right)}}{{d{\text{x}}}}.\smallint \dfrac{1}{{{{\text{x}}^2}}}dx} \right)dx \\
&= - \dfrac{{logx}}{{\text{x}}} - \left( {\smallint \dfrac{1}{{\text{x}}}.\left( { - \dfrac{1}{{\text{x}}}} \right)dx} \right) \\
&= - \dfrac{{logx}}{{\text{x}}} + \smallint \dfrac{1}{{{{\text{x}}^2}}}dx = - \dfrac{{logx}}{{\text{x}}} - \dfrac{1}{{\text{x}}} + {\text{C}} \\
\end{align} $
So, we can proceed as-
$\dfrac{{\text{t}}}{{\text{x}}} = \dfrac{{logx}}{{\text{x}}} + \dfrac{1}{{\text{x}}} + {\text{C}} \\$
We know that ${\text{t}} = \dfrac{1}{{\text{y}}}$ so,
$\dfrac{1}{{xy}} = \dfrac{{logx}}{{\text{x}}} + \dfrac{1}{{\text{x}}} + {\text{C}} \\$
Multiplying by ${\text{x}}$ and taking reciprocal we get,
${\text{y}} = \dfrac{1}{{1 + logx + Cx}} \\ $
Note: We need to know multiple concepts in this problem ranging from differential equations and calculus to the concept of logarithmic functions. We need to remember the formula for integrations and even the method to find the solution of first order linear differential equations. We should also never forget to add the constant of integration.
$\dfrac{{dy}}{{dx}} + yP\left( {\text{x}} \right) = {\text{Q}}\left( {\text{x}} \right)$
Here P(x) and Q(x) are functions in x. After bringing the equation in this form, we find and multiply it with the integrating factor which is given by-
${\text{I}}.{\text{F}} = {{\text{e}}^{\smallint {\text{P}}\left( {\text{x}} \right)dx}}$
The equation can then be written in the form-
${\text{y}}\left( {{\text{I}}.{\text{F}}} \right) = \smallint {\text{Q}}\left( {\text{x}} \right).\left( {{\text{I}}.{\text{F}}} \right) + {\text{C}}$
Complete step-by-step solution -
We have been given that-
$(ylogx - 1)ydx = xdy$
Dividing the equation by dx, we get-
$\begin{align}
& {\text{x}}\dfrac{{dy}}{{dx}} = \left( {{{\text{y}}^2}logx - {\text{y}}} \right) \\
& \dfrac{{dy}}{{dx}} = \dfrac{{{{\text{y}}^2}}}{{\text{x}}}logx - \dfrac{{\text{y}}}{{\text{x}}} \\
& \dfrac{{dy}}{{dx}} + \dfrac{{\text{y}}}{{\text{x}}} = {{\text{y}}^2}\dfrac{{logx}}{{\text{x}}} \\
\end{align} $
We know that the term Q(x) should be independent of y, so we need to divide the equation with $y^2$ as-
$\dfrac{1}{{{{\text{y}}^2}}}\dfrac{{dy}}{{dx}} + \dfrac{1}{{xy}} = \dfrac{{logx}}{{\text{x}}}$
To simplify further, we need to make a substitution as-
${\text{t}} = \dfrac{1}{{\text{y}}}$
$dt = - \dfrac{1}{{{{\text{y}}^2}}}dy$
Substituting these values in the equation we get-
$ - \dfrac{{dt}}{{dx}} + \dfrac{{\text{t}}}{{\text{x}}} = \dfrac{{logx}}{{\text{x}}}$
$\dfrac{{dt}}{{dx}} - \dfrac{{\text{t}}}{{\text{x}}} = - \dfrac{{logx}}{{\text{x}}}$
By comparison, we can clearly see that-
${\text{P}}\left( {\text{x}} \right) = - \dfrac{1}{{\text{x}}}\;and\;{\text{Q}}\left( {\text{x}} \right) = - \dfrac{{logx}}{{\text{x}}}$
We can find the integrating factor as-
$\begin{align}
&{\text{I}}.{\text{F}} = {{\text{e}}^{\smallint {\text{P}}\left( {\text{x}} \right)dx}} = {{\text{e}}^{\smallint - \dfrac{1}{{\text{x}}}dx}} = {{\text{e}}^{ - logx}} = {{\text{e}}^{\log \left( {\dfrac{1}{{\text{x}}}} \right)}} \\
& We\;know\;that\;{{\text{e}}^{logx}} = {\text{x}}\;so,\; \\
& {\text{I}}.{\text{F}} = {{\text{e}}^{\log \left( {\dfrac{1}{{\text{x}}}} \right)}} = \dfrac{1}{{\text{x}}} \\
\end{align} $
The equation can now be written as-
${\text{y}}\left( {{\text{I}}.{\text{F}}} \right) = \smallint {\text{Q}}\left( {\text{x}} \right).\left( {{\text{I}}.{\text{F}}} \right) + {\text{C}}$
${\text{t}}\left( {\dfrac{1}{{\text{x}}}} \right) = \smallint \left( { - \dfrac{{logx}}{{\text{x}}}} \right)\left( {\dfrac{1}{{\text{x}}}} \right)dx$
$\dfrac{{\text{t}}}{{\text{x}}} = - \smallint \dfrac{{logx}}{{{{\text{x}}^2}}}dx$
We will need to use integration by parts to further solve this problem-
$\smallint {\text{u}}\left( {\text{x}} \right){\text{v}}\left( {\text{x}} \right)dx = \left[ {{\text{v}}\left( {\text{x}} \right).\smallint {\text{u}}\left( {\text{x}} \right)dx} \right] - \smallint \left( {{\text{v}}'\left( {\text{x}} \right).\smallint {\text{u}}\left( {\text{x}} \right)dx} \right)dx$
We will assume that v(x) = logx and u(x) = x-2
$\begin{align}
&= \smallint \dfrac{{logx}}{{{{\text{x}}^2}}}dx \\
&= logx\smallint \dfrac{1}{{{{\text{x}}^2}}}dx - \smallint \left( {\dfrac{{d\left( {logx} \right)}}{{d{\text{x}}}}.\smallint \dfrac{1}{{{{\text{x}}^2}}}dx} \right)dx \\
&= - \dfrac{{logx}}{{\text{x}}} - \left( {\smallint \dfrac{1}{{\text{x}}}.\left( { - \dfrac{1}{{\text{x}}}} \right)dx} \right) \\
&= - \dfrac{{logx}}{{\text{x}}} + \smallint \dfrac{1}{{{{\text{x}}^2}}}dx = - \dfrac{{logx}}{{\text{x}}} - \dfrac{1}{{\text{x}}} + {\text{C}} \\
\end{align} $
So, we can proceed as-
$\dfrac{{\text{t}}}{{\text{x}}} = \dfrac{{logx}}{{\text{x}}} + \dfrac{1}{{\text{x}}} + {\text{C}} \\$
We know that ${\text{t}} = \dfrac{1}{{\text{y}}}$ so,
$\dfrac{1}{{xy}} = \dfrac{{logx}}{{\text{x}}} + \dfrac{1}{{\text{x}}} + {\text{C}} \\$
Multiplying by ${\text{x}}$ and taking reciprocal we get,
${\text{y}} = \dfrac{1}{{1 + logx + Cx}} \\ $
Note: We need to know multiple concepts in this problem ranging from differential equations and calculus to the concept of logarithmic functions. We need to remember the formula for integrations and even the method to find the solution of first order linear differential equations. We should also never forget to add the constant of integration.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

