
Solve the equation \[{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8 = 0}}\] , whose one of roots is $\sqrt 6 {\text{ - 2}}$.
Answer
607.2k+ views
- Hint: As the given root is irrational, it occurs in pairs. Therefore, another root is $ - \sqrt 6 {\text{ - 2}}$. We will make a function with these two roots and solve the given problem.
Complete step-by-step solution -
Now, given roots are $\sqrt 6 {\text{ - 2}}$ and $ - \sqrt 6 {\text{ - 2}}$. So, we can make a function.
Therefore, function is h (x) = ${\text{(x + 2 + }}\sqrt 6 ){\text{(x + 2 - }}\sqrt 6 )$
h (x) = ${{\text{x}}^2}{\text{ + 4x - 2}}$
Now, to find other roots, we have to divide f (x) = \[{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}}\] by function h (x).
Now, by division theorem,
Dividend = divisor x quotient + remainder
As, the function h (x) is formed by the roots of f (x), so remainder = 0
f (x) = h(x). quotient
quotient = $\dfrac{{{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}}}}{{{{\text{x}}^2}{\text{ + 4x - 2}}}}$.
${{\text{x}}^2}{\text{ + 4x - 2}}\mathop{\left){\vphantom{1\begin{gathered}
{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} \\
\underline {{{\text{x}}^6}{\text{ + 4}}{{\text{x}}^5}{\text{ - 2}}{{\text{x}}^4}} \\
- 4{{\text{x}}^5}{\text{ - 16}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + }}{\text{8}} \\
\underline { - 4{{\text{x}}^5}{\text{ - 16}}{{\text{x}}^4}{\text{ + 8}}{{\text{x}}^3}} \\
{\text{8}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} \\
\underline {8{{\text{x}}^3}{\text{ + 32}}{{\text{x}}^2}{\text{ - 16x}}} \\
{\text{4}}{{\text{x}}^2}{\text{ - 16x + 8}} \\
\underline {{\text{4}}{{\text{x}}^2}{\text{ - 16x + 8}}} \\
\underline 0 {\text{ }} \\
\end{gathered} }}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{gathered}
{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} \\
\underline {{{\text{x}}^6}{\text{ + 4}}{{\text{x}}^5}{\text{ - 2}}{{\text{x}}^4}} \\
- 4{{\text{x}}^5}{\text{ - 16}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + }}{\text{8}} \\
\underline { - 4{{\text{x}}^5}{\text{ - 16}}{{\text{x}}^4}{\text{ + 8}}{{\text{x}}^3}} \\
{\text{8}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} \\
\underline {8{{\text{x}}^3}{\text{ + 32}}{{\text{x}}^2}{\text{ - 16x}}} \\
{\text{-4}}{{\text{x}}^2}{\text{ - 16x + 8}} \\
\underline {{\text{-4}}{{\text{x}}^2}{\text{ - 16x + 8}}} \\
\underline 0 {\text{ }} \\
\end{gathered} }}}
\limits^{\displaystyle \,\,\, {{{\text{x}}^4}{\text{ - 4}}{{\text{x}}^3}{\text{ + 8x - 4}}}}$
quotient = ${{\text{x}}^4}{\text{ - 4}}{{\text{x}}^3}{\text{ + 8x - 4}}$
Now, to find the roots of quotient, we will put quotient = 0
Therefore, we get
${{\text{x}}^4}{\text{ - 4}}{{\text{x}}^3}{\text{ + 8x - 4}}$ = 0
${\text{(}}{{\text{x}}^2}{\text{ }} - {\text{ 2)(}}{{\text{x}}^2}{\text{ - 4x + 2) = 0}}$
Solving $({{\text{x}}^2}{\text{ - 2) = 0}}$. We will use the property ${\text{(}}{{\text{x}}^2}{\text{ - }}{{\text{y}}^2}{\text{) = (x + y)(x - y)}}$, we get
${\text{x = }} \pm \sqrt 2 $
Solving ${{\text{x}}^2}{\text{ - 4x + 2 = 0}}$ with the help of Sridharacharya rule ${\text{x = }}\dfrac{{{\text{ - b }} \pm \sqrt {{{\text{b}}^2}{\text{ - 4ac}}} }}{{2{\text{a}}}}$, we get
${\text{x = 2}} \pm \sqrt 2 $
So, the roots are $ \pm \sqrt 2 $, $2 \pm \sqrt 2 $ and $ - 2 \pm \sqrt 6 $.
Note: When we come up with such types of questions, we will first make an equation with the roots given in the question. Now, to find the other roots, we have to divide the given equation by the equation formed. After it, we will apply the division theorem to find the quotient and the roots will be found by putting the equation of quotient equals to zero.
Complete step-by-step solution -
Now, given roots are $\sqrt 6 {\text{ - 2}}$ and $ - \sqrt 6 {\text{ - 2}}$. So, we can make a function.
Therefore, function is h (x) = ${\text{(x + 2 + }}\sqrt 6 ){\text{(x + 2 - }}\sqrt 6 )$
h (x) = ${{\text{x}}^2}{\text{ + 4x - 2}}$
Now, to find other roots, we have to divide f (x) = \[{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}}\] by function h (x).
Now, by division theorem,
Dividend = divisor x quotient + remainder
As, the function h (x) is formed by the roots of f (x), so remainder = 0
f (x) = h(x). quotient
quotient = $\dfrac{{{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}}}}{{{{\text{x}}^2}{\text{ + 4x - 2}}}}$.
${{\text{x}}^2}{\text{ + 4x - 2}}\mathop{\left){\vphantom{1\begin{gathered}
{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} \\
\underline {{{\text{x}}^6}{\text{ + 4}}{{\text{x}}^5}{\text{ - 2}}{{\text{x}}^4}} \\
- 4{{\text{x}}^5}{\text{ - 16}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + }}{\text{8}} \\
\underline { - 4{{\text{x}}^5}{\text{ - 16}}{{\text{x}}^4}{\text{ + 8}}{{\text{x}}^3}} \\
{\text{8}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} \\
\underline {8{{\text{x}}^3}{\text{ + 32}}{{\text{x}}^2}{\text{ - 16x}}} \\
{\text{4}}{{\text{x}}^2}{\text{ - 16x + 8}} \\
\underline {{\text{4}}{{\text{x}}^2}{\text{ - 16x + 8}}} \\
\underline 0 {\text{ }} \\
\end{gathered} }}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{gathered}
{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} \\
\underline {{{\text{x}}^6}{\text{ + 4}}{{\text{x}}^5}{\text{ - 2}}{{\text{x}}^4}} \\
- 4{{\text{x}}^5}{\text{ - 16}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + }}{\text{8}} \\
\underline { - 4{{\text{x}}^5}{\text{ - 16}}{{\text{x}}^4}{\text{ + 8}}{{\text{x}}^3}} \\
{\text{8}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} \\
\underline {8{{\text{x}}^3}{\text{ + 32}}{{\text{x}}^2}{\text{ - 16x}}} \\
{\text{-4}}{{\text{x}}^2}{\text{ - 16x + 8}} \\
\underline {{\text{-4}}{{\text{x}}^2}{\text{ - 16x + 8}}} \\
\underline 0 {\text{ }} \\
\end{gathered} }}}
\limits^{\displaystyle \,\,\, {{{\text{x}}^4}{\text{ - 4}}{{\text{x}}^3}{\text{ + 8x - 4}}}}$
quotient = ${{\text{x}}^4}{\text{ - 4}}{{\text{x}}^3}{\text{ + 8x - 4}}$
Now, to find the roots of quotient, we will put quotient = 0
Therefore, we get
${{\text{x}}^4}{\text{ - 4}}{{\text{x}}^3}{\text{ + 8x - 4}}$ = 0
${\text{(}}{{\text{x}}^2}{\text{ }} - {\text{ 2)(}}{{\text{x}}^2}{\text{ - 4x + 2) = 0}}$
Solving $({{\text{x}}^2}{\text{ - 2) = 0}}$. We will use the property ${\text{(}}{{\text{x}}^2}{\text{ - }}{{\text{y}}^2}{\text{) = (x + y)(x - y)}}$, we get
${\text{x = }} \pm \sqrt 2 $
Solving ${{\text{x}}^2}{\text{ - 4x + 2 = 0}}$ with the help of Sridharacharya rule ${\text{x = }}\dfrac{{{\text{ - b }} \pm \sqrt {{{\text{b}}^2}{\text{ - 4ac}}} }}{{2{\text{a}}}}$, we get
${\text{x = 2}} \pm \sqrt 2 $
So, the roots are $ \pm \sqrt 2 $, $2 \pm \sqrt 2 $ and $ - 2 \pm \sqrt 6 $.
Note: When we come up with such types of questions, we will first make an equation with the roots given in the question. Now, to find the other roots, we have to divide the given equation by the equation formed. After it, we will apply the division theorem to find the quotient and the roots will be found by putting the equation of quotient equals to zero.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

