
Solve the equation \[{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8 = 0}}\] , whose one of roots is $\sqrt 6 {\text{ - 2}}$.
Answer
595.5k+ views
- Hint: As the given root is irrational, it occurs in pairs. Therefore, another root is $ - \sqrt 6 {\text{ - 2}}$. We will make a function with these two roots and solve the given problem.
Complete step-by-step solution -
Now, given roots are $\sqrt 6 {\text{ - 2}}$ and $ - \sqrt 6 {\text{ - 2}}$. So, we can make a function.
Therefore, function is h (x) = ${\text{(x + 2 + }}\sqrt 6 ){\text{(x + 2 - }}\sqrt 6 )$
h (x) = ${{\text{x}}^2}{\text{ + 4x - 2}}$
Now, to find other roots, we have to divide f (x) = \[{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}}\] by function h (x).
Now, by division theorem,
Dividend = divisor x quotient + remainder
As, the function h (x) is formed by the roots of f (x), so remainder = 0
f (x) = h(x). quotient
quotient = $\dfrac{{{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}}}}{{{{\text{x}}^2}{\text{ + 4x - 2}}}}$.
${{\text{x}}^2}{\text{ + 4x - 2}}\mathop{\left){\vphantom{1\begin{gathered}
{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} \\
\underline {{{\text{x}}^6}{\text{ + 4}}{{\text{x}}^5}{\text{ - 2}}{{\text{x}}^4}} \\
- 4{{\text{x}}^5}{\text{ - 16}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + }}{\text{8}} \\
\underline { - 4{{\text{x}}^5}{\text{ - 16}}{{\text{x}}^4}{\text{ + 8}}{{\text{x}}^3}} \\
{\text{8}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} \\
\underline {8{{\text{x}}^3}{\text{ + 32}}{{\text{x}}^2}{\text{ - 16x}}} \\
{\text{4}}{{\text{x}}^2}{\text{ - 16x + 8}} \\
\underline {{\text{4}}{{\text{x}}^2}{\text{ - 16x + 8}}} \\
\underline 0 {\text{ }} \\
\end{gathered} }}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{gathered}
{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} \\
\underline {{{\text{x}}^6}{\text{ + 4}}{{\text{x}}^5}{\text{ - 2}}{{\text{x}}^4}} \\
- 4{{\text{x}}^5}{\text{ - 16}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + }}{\text{8}} \\
\underline { - 4{{\text{x}}^5}{\text{ - 16}}{{\text{x}}^4}{\text{ + 8}}{{\text{x}}^3}} \\
{\text{8}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} \\
\underline {8{{\text{x}}^3}{\text{ + 32}}{{\text{x}}^2}{\text{ - 16x}}} \\
{\text{-4}}{{\text{x}}^2}{\text{ - 16x + 8}} \\
\underline {{\text{-4}}{{\text{x}}^2}{\text{ - 16x + 8}}} \\
\underline 0 {\text{ }} \\
\end{gathered} }}}
\limits^{\displaystyle \,\,\, {{{\text{x}}^4}{\text{ - 4}}{{\text{x}}^3}{\text{ + 8x - 4}}}}$
quotient = ${{\text{x}}^4}{\text{ - 4}}{{\text{x}}^3}{\text{ + 8x - 4}}$
Now, to find the roots of quotient, we will put quotient = 0
Therefore, we get
${{\text{x}}^4}{\text{ - 4}}{{\text{x}}^3}{\text{ + 8x - 4}}$ = 0
${\text{(}}{{\text{x}}^2}{\text{ }} - {\text{ 2)(}}{{\text{x}}^2}{\text{ - 4x + 2) = 0}}$
Solving $({{\text{x}}^2}{\text{ - 2) = 0}}$. We will use the property ${\text{(}}{{\text{x}}^2}{\text{ - }}{{\text{y}}^2}{\text{) = (x + y)(x - y)}}$, we get
${\text{x = }} \pm \sqrt 2 $
Solving ${{\text{x}}^2}{\text{ - 4x + 2 = 0}}$ with the help of Sridharacharya rule ${\text{x = }}\dfrac{{{\text{ - b }} \pm \sqrt {{{\text{b}}^2}{\text{ - 4ac}}} }}{{2{\text{a}}}}$, we get
${\text{x = 2}} \pm \sqrt 2 $
So, the roots are $ \pm \sqrt 2 $, $2 \pm \sqrt 2 $ and $ - 2 \pm \sqrt 6 $.
Note: When we come up with such types of questions, we will first make an equation with the roots given in the question. Now, to find the other roots, we have to divide the given equation by the equation formed. After it, we will apply the division theorem to find the quotient and the roots will be found by putting the equation of quotient equals to zero.
Complete step-by-step solution -
Now, given roots are $\sqrt 6 {\text{ - 2}}$ and $ - \sqrt 6 {\text{ - 2}}$. So, we can make a function.
Therefore, function is h (x) = ${\text{(x + 2 + }}\sqrt 6 ){\text{(x + 2 - }}\sqrt 6 )$
h (x) = ${{\text{x}}^2}{\text{ + 4x - 2}}$
Now, to find other roots, we have to divide f (x) = \[{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}}\] by function h (x).
Now, by division theorem,
Dividend = divisor x quotient + remainder
As, the function h (x) is formed by the roots of f (x), so remainder = 0
f (x) = h(x). quotient
quotient = $\dfrac{{{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}}}}{{{{\text{x}}^2}{\text{ + 4x - 2}}}}$.
${{\text{x}}^2}{\text{ + 4x - 2}}\mathop{\left){\vphantom{1\begin{gathered}
{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} \\
\underline {{{\text{x}}^6}{\text{ + 4}}{{\text{x}}^5}{\text{ - 2}}{{\text{x}}^4}} \\
- 4{{\text{x}}^5}{\text{ - 16}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + }}{\text{8}} \\
\underline { - 4{{\text{x}}^5}{\text{ - 16}}{{\text{x}}^4}{\text{ + 8}}{{\text{x}}^3}} \\
{\text{8}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} \\
\underline {8{{\text{x}}^3}{\text{ + 32}}{{\text{x}}^2}{\text{ - 16x}}} \\
{\text{4}}{{\text{x}}^2}{\text{ - 16x + 8}} \\
\underline {{\text{4}}{{\text{x}}^2}{\text{ - 16x + 8}}} \\
\underline 0 {\text{ }} \\
\end{gathered} }}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{gathered}
{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} \\
\underline {{{\text{x}}^6}{\text{ + 4}}{{\text{x}}^5}{\text{ - 2}}{{\text{x}}^4}} \\
- 4{{\text{x}}^5}{\text{ - 16}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + }}{\text{8}} \\
\underline { - 4{{\text{x}}^5}{\text{ - 16}}{{\text{x}}^4}{\text{ + 8}}{{\text{x}}^3}} \\
{\text{8}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} \\
\underline {8{{\text{x}}^3}{\text{ + 32}}{{\text{x}}^2}{\text{ - 16x}}} \\
{\text{-4}}{{\text{x}}^2}{\text{ - 16x + 8}} \\
\underline {{\text{-4}}{{\text{x}}^2}{\text{ - 16x + 8}}} \\
\underline 0 {\text{ }} \\
\end{gathered} }}}
\limits^{\displaystyle \,\,\, {{{\text{x}}^4}{\text{ - 4}}{{\text{x}}^3}{\text{ + 8x - 4}}}}$
quotient = ${{\text{x}}^4}{\text{ - 4}}{{\text{x}}^3}{\text{ + 8x - 4}}$
Now, to find the roots of quotient, we will put quotient = 0
Therefore, we get
${{\text{x}}^4}{\text{ - 4}}{{\text{x}}^3}{\text{ + 8x - 4}}$ = 0
${\text{(}}{{\text{x}}^2}{\text{ }} - {\text{ 2)(}}{{\text{x}}^2}{\text{ - 4x + 2) = 0}}$
Solving $({{\text{x}}^2}{\text{ - 2) = 0}}$. We will use the property ${\text{(}}{{\text{x}}^2}{\text{ - }}{{\text{y}}^2}{\text{) = (x + y)(x - y)}}$, we get
${\text{x = }} \pm \sqrt 2 $
Solving ${{\text{x}}^2}{\text{ - 4x + 2 = 0}}$ with the help of Sridharacharya rule ${\text{x = }}\dfrac{{{\text{ - b }} \pm \sqrt {{{\text{b}}^2}{\text{ - 4ac}}} }}{{2{\text{a}}}}$, we get
${\text{x = 2}} \pm \sqrt 2 $
So, the roots are $ \pm \sqrt 2 $, $2 \pm \sqrt 2 $ and $ - 2 \pm \sqrt 6 $.
Note: When we come up with such types of questions, we will first make an equation with the roots given in the question. Now, to find the other roots, we have to divide the given equation by the equation formed. After it, we will apply the division theorem to find the quotient and the roots will be found by putting the equation of quotient equals to zero.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

