
Solve the equation \[\sin \theta +\sin 5\theta =\sin 3\theta \].
Answer
612k+ views
Hint: We will use the formula, \[\operatorname{sinA}+sinB=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\] and apply it to the terms \[\sin \theta \] and \[sin5\theta \] first. Then we can simplify and get the value using the general solution for \[\sin \theta \].
Complete step-by-step answer:
Consider the expression \[\sin \theta +\sin 5\theta =\sin 3\theta ....(1)\] subtracting the term \[\sin 3\theta \] from both sides, we have that,
\[\sin \theta +\sin 5\theta -\sin 3\theta =0\].
Now we will apply the formula \[\operatorname{sinA}+sinB=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\] to the term \[\sin \theta +\sin 5\theta \].
\[\begin{align}
& \Rightarrow \sin \theta +\sin 5\theta -\sin 3\theta =0 \\
& \Rightarrow 2\sin \left( \dfrac{\theta +5\theta }{2} \right)\cos \left( \dfrac{\theta -5\theta }{2} \right)-\sin 3\theta =0 \\
& \Rightarrow 2\sin \left( \dfrac{6\theta }{2} \right)\cos \left( \dfrac{-4\theta }{2} \right)-\sin 3\theta =0 \\
& \Rightarrow 2sin\left( 3\theta \right)\cos \left( -2\theta \right)-\sin 3\theta =0 \\
& \Rightarrow \sin 3\theta \left[ 2\cos (-2\theta )-1 \right]-0 \\
\end{align}\]
Therefore, we have \[\sin 3\theta =0\] or \[2\cos (-2\theta )-1=0\].
Considering the expression \[\sin 3\theta =0\], we know that \[\sin 0=0\]. Also, \[\sin (n\pi )=0\], where \[n=\pm 1,\pm 2,...\]
By the value of \[\sin 0=0\] we have \[\sin 3\theta =\sin 0\].
\[\begin{align}
& 3\theta =0 \\
& 3\theta =0+2n\pi \\
\end{align}\]
Now, considering the expression \[\sin (n\pi )=0\] where \[n=\pm 1,\pm 2,...\] By this value of 0, we have,
\[\sin 3\theta =\sin (n\pi )\], where \[n=\pm 1,\pm 2,...\]
\[\begin{align}
& 3\theta =n\pi +2n\pi \\
& \theta =\dfrac{n\pi }{3}+\dfrac{2n\pi }{3} \\
\end{align}\]
or \[\theta =\dfrac{n\pi }{3}+\dfrac{2n\pi }{3}\], where \[n=\pm 1,\pm 2,...\]
or \[\theta =\dfrac{3n\pi }{3}\], where \[n=\pm 1,\pm 2,...\]
Now we will consider the expression \[2\cos (-2\theta )-1=0\].
We will use \[\cos (-\theta )=\cos \left( -\theta \right)\]. Therefore, we have that,
\[\begin{align}
& 2\cos (-2\theta )-1=0 \\
& 2\cos \left( -2\theta \right)=1 \\
& \cos \left( -2\theta \right)=\dfrac{1}{2} \\
\end{align}\]
As we know that the value of \[\dfrac{1}{2}=\cos \left( \dfrac{\pi }{3} \right)\].
Thus we get,
\[\cos \left( -2\theta \right)=\cos \left( \dfrac{\pi }{3} \right)\]
We already know that the value of cos is positive in the first and the fourth quadrant. So we
will consider the first quadrant. In this quadrant,
\[\begin{align}
& \cos \left( \dfrac{\pi }{3} \right)=\cos \left( \dfrac{\pi }{3} \right) \\
& \cos \left( -2\theta \right)=\cos \left( \dfrac{\pi }{3} \right) \\
& -2\theta =\dfrac{\pi }{3} \\
& \theta =\dfrac{-\pi }{6} \\
\end{align}\]
or \[\theta =\dfrac{-\pi }{6}+\dfrac{2}{2}n\pi \], where \[n=\pm 1,\pm 2,...\]
Now, considering the fourth quadrant,
\[\begin{align}
& \cos \left( \dfrac{\pi }{3} \right)=\cos \left( 2\pi -\dfrac{\pi }{3} \right) \\
& \cos \left( -2\theta \right)=\cos \left( 2\pi -\dfrac{\pi }{3} \right) \\
& -2\theta =2\pi -\dfrac{\pi }{3} \\
& \theta =\dfrac{-1}{2}\left( 2\pi -\dfrac{\pi }{3} \right) \\
& \theta =\dfrac{-1}{2}\left( \dfrac{6\pi -\pi }{3} \right) \\
& \theta =\dfrac{-1}{2}\left( \dfrac{5\pi }{3} \right) \\
& \theta =\dfrac{-5\pi }{6} \\
\end{align}\]
or \[\theta =\dfrac{-5\pi }{6}+\dfrac{2}{2}n\pi \], where \[n=\pm 1,\pm 2,...\]
So the values of \[\theta =2n\dfrac{\pi }{3},\theta =\dfrac{n\pi }{3}+\dfrac{2n\pi }{3},\theta =\dfrac{-\pi }{6}+\dfrac{2n\pi }{2},\theta =\dfrac{-5\pi }{6}+\dfrac{2n\pi }{2}\], where \[n=\pm 1,\pm 2,...\]
Note: We are not allowed to change the angle by ourselves. For example, in this question, we come across the term \[\cos (-2\theta )\]. We may be tempted to apply the formula \[\cos (-2\theta )=cos(2\theta )\]. But this will lead to getting a wrong answer to the question.
Complete step-by-step answer:
Consider the expression \[\sin \theta +\sin 5\theta =\sin 3\theta ....(1)\] subtracting the term \[\sin 3\theta \] from both sides, we have that,
\[\sin \theta +\sin 5\theta -\sin 3\theta =0\].
Now we will apply the formula \[\operatorname{sinA}+sinB=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\] to the term \[\sin \theta +\sin 5\theta \].
\[\begin{align}
& \Rightarrow \sin \theta +\sin 5\theta -\sin 3\theta =0 \\
& \Rightarrow 2\sin \left( \dfrac{\theta +5\theta }{2} \right)\cos \left( \dfrac{\theta -5\theta }{2} \right)-\sin 3\theta =0 \\
& \Rightarrow 2\sin \left( \dfrac{6\theta }{2} \right)\cos \left( \dfrac{-4\theta }{2} \right)-\sin 3\theta =0 \\
& \Rightarrow 2sin\left( 3\theta \right)\cos \left( -2\theta \right)-\sin 3\theta =0 \\
& \Rightarrow \sin 3\theta \left[ 2\cos (-2\theta )-1 \right]-0 \\
\end{align}\]
Therefore, we have \[\sin 3\theta =0\] or \[2\cos (-2\theta )-1=0\].
Considering the expression \[\sin 3\theta =0\], we know that \[\sin 0=0\]. Also, \[\sin (n\pi )=0\], where \[n=\pm 1,\pm 2,...\]
By the value of \[\sin 0=0\] we have \[\sin 3\theta =\sin 0\].
\[\begin{align}
& 3\theta =0 \\
& 3\theta =0+2n\pi \\
\end{align}\]
Now, considering the expression \[\sin (n\pi )=0\] where \[n=\pm 1,\pm 2,...\] By this value of 0, we have,
\[\sin 3\theta =\sin (n\pi )\], where \[n=\pm 1,\pm 2,...\]
\[\begin{align}
& 3\theta =n\pi +2n\pi \\
& \theta =\dfrac{n\pi }{3}+\dfrac{2n\pi }{3} \\
\end{align}\]
or \[\theta =\dfrac{n\pi }{3}+\dfrac{2n\pi }{3}\], where \[n=\pm 1,\pm 2,...\]
or \[\theta =\dfrac{3n\pi }{3}\], where \[n=\pm 1,\pm 2,...\]
Now we will consider the expression \[2\cos (-2\theta )-1=0\].
We will use \[\cos (-\theta )=\cos \left( -\theta \right)\]. Therefore, we have that,
\[\begin{align}
& 2\cos (-2\theta )-1=0 \\
& 2\cos \left( -2\theta \right)=1 \\
& \cos \left( -2\theta \right)=\dfrac{1}{2} \\
\end{align}\]
As we know that the value of \[\dfrac{1}{2}=\cos \left( \dfrac{\pi }{3} \right)\].
Thus we get,
\[\cos \left( -2\theta \right)=\cos \left( \dfrac{\pi }{3} \right)\]
We already know that the value of cos is positive in the first and the fourth quadrant. So we
will consider the first quadrant. In this quadrant,
\[\begin{align}
& \cos \left( \dfrac{\pi }{3} \right)=\cos \left( \dfrac{\pi }{3} \right) \\
& \cos \left( -2\theta \right)=\cos \left( \dfrac{\pi }{3} \right) \\
& -2\theta =\dfrac{\pi }{3} \\
& \theta =\dfrac{-\pi }{6} \\
\end{align}\]
or \[\theta =\dfrac{-\pi }{6}+\dfrac{2}{2}n\pi \], where \[n=\pm 1,\pm 2,...\]
Now, considering the fourth quadrant,
\[\begin{align}
& \cos \left( \dfrac{\pi }{3} \right)=\cos \left( 2\pi -\dfrac{\pi }{3} \right) \\
& \cos \left( -2\theta \right)=\cos \left( 2\pi -\dfrac{\pi }{3} \right) \\
& -2\theta =2\pi -\dfrac{\pi }{3} \\
& \theta =\dfrac{-1}{2}\left( 2\pi -\dfrac{\pi }{3} \right) \\
& \theta =\dfrac{-1}{2}\left( \dfrac{6\pi -\pi }{3} \right) \\
& \theta =\dfrac{-1}{2}\left( \dfrac{5\pi }{3} \right) \\
& \theta =\dfrac{-5\pi }{6} \\
\end{align}\]
or \[\theta =\dfrac{-5\pi }{6}+\dfrac{2}{2}n\pi \], where \[n=\pm 1,\pm 2,...\]
So the values of \[\theta =2n\dfrac{\pi }{3},\theta =\dfrac{n\pi }{3}+\dfrac{2n\pi }{3},\theta =\dfrac{-\pi }{6}+\dfrac{2n\pi }{2},\theta =\dfrac{-5\pi }{6}+\dfrac{2n\pi }{2}\], where \[n=\pm 1,\pm 2,...\]
Note: We are not allowed to change the angle by ourselves. For example, in this question, we come across the term \[\cos (-2\theta )\]. We may be tempted to apply the formula \[\cos (-2\theta )=cos(2\theta )\]. But this will lead to getting a wrong answer to the question.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

