
Solve the equation $\sin \left( \theta \right)+\sin \left( 2\theta \right)+\sin \left( 3\theta \right)+\sin \left( 4\theta \right)=0$.
Answer
612k+ views
Hint: We will apply the formula of trigonometry given by $\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$ to solve the equation in the question. Here, A and B are the given angles.
Complete step-by-step answer:
We will consider the equation given by $\sin \left( \theta \right)+\sin \left( 2\theta \right)+\sin \left( 3\theta \right)+\sin \left( 4\theta \right)=0...(i)$.
We will now interchange the values $\sin \left( \theta \right)$ and $\sin \left( 2\theta \right)$ with each other and $\sin \left( 2\theta \right)$ and $\sin \left( 4\theta \right)$ with each other. Therefore, we have $\left( \sin \left( \theta \right)+\sin \left( 3\theta \right) \right)+\left( \sin \left( 2\theta \right)+\sin \left( 4\theta \right) \right)...(ii)$.
Now, we will apply the trigonometric formula given by $\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$ and apply it to the equation (ii). Thus, we get
$\begin{align}
& \left( \sin \left( \theta \right)+\sin \left( 3\theta \right) \right)+\left( \sin \left( 2\theta \right)+\sin \left( 4\theta \right) \right)=0 \\
& \Rightarrow 2\sin \left( \dfrac{\theta +3\theta }{2} \right)\cos \left( \dfrac{\theta -3\theta }{2} \right)+2\sin \left( \dfrac{2\theta +4\theta }{2} \right)\cos \left( \dfrac{2\theta -4\theta }{2} \right)=0 \\
& \Rightarrow 2\sin \left( \dfrac{4\theta }{2} \right)\cos \left( \dfrac{-2\theta }{2} \right)+2\sin \left( \dfrac{6\theta }{2} \right)\cos \left( \dfrac{-2\theta }{2} \right)=0 \\
& \Rightarrow 2\sin \left( 2\theta \right)\cos \left( -\theta \right)+2\sin \left( 3\theta \right)\cos \left( -\theta \right)=0 \\
\end{align}$
Now, we will take the common terms $2\cos \left( -\theta \right)$ and make it separated from the equation. Thus, we get $2\cos \left( -\theta \right)\left[ \sin \left( 2\theta \right)+\sin \left( 3\theta \right) \right]=0$. Therefore, we can write $\cos \left( -\theta \right)$ and $\sin \left( 2\theta \right)+\sin \left( 3\theta \right)=0$.
Now, we will consider $\cos \left( -\theta \right)=0$.
As the value of $\cos \left( \dfrac{\pi }{2} \right)=0$. Therefore, we can write $\cos \left( -\theta \right)=\cos \left( \dfrac{\pi }{2} \right)$. Therefore, by the formula $\cos \left( x \right)=\cos \left( y \right)$ we have $x=y\pm 2n\pi $ where, n = 0, -1, +1, -2, +2, ... .
$\Rightarrow \cos \left( -\theta \right)=\cos \left( \dfrac{\pi }{2} \right)$ where, n = ..., -1, 0, -1, ... .
$\Rightarrow \left( -\theta \right)=\dfrac{\pi }{2}+2n\pi $ where, n = ..., -1, 0, 1, ... .
Or, $\theta =\dfrac{-\pi }{2}-2n\pi $ where, n = ..., -1, 0, 1, ... .
Now, we will consider $\sin \left( 2\theta \right)+\sin \left( 3\theta \right)=0$. Now, we will apply the formula given by $\begin{align}
& \sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) \\
& \Rightarrow \sin \left( 2\theta \right)+\sin \left( 3\theta \right)=0 \\
& \Rightarrow 2\sin \left( \dfrac{2\theta +3\theta }{2} \right)\cos \left( \dfrac{2\theta -3\theta }{2} \right)=0 \\
& \Rightarrow 2\sin \left( \dfrac{5\theta }{2} \right)cis\left( \dfrac{-\theta }{2} \right)=0 \\
\end{align}$
Now, we have that $\sin \left( \dfrac{5\theta }{2} \right)=0$ and $\cos \left( \dfrac{-\theta }{2} \right)=0$. We will first consider $\cos \left( \dfrac{-\theta }{2} \right)=0$. At this stage we will apply the formula $\cos x=\cos y$. Therefore, we have
$\begin{align}
& \cos \left( \dfrac{-\theta }{2} \right)=0 \\
& \Rightarrow \cos \left( \dfrac{-\theta }{2} \right)=\cos \left( \dfrac{\pi }{2} \right) \\
\end{align}$
This is because we know that the volume of $\cos \left( \dfrac{\pi }{2} \right)=0$. And by the formula $\cos x=\cos y$ we have $x=y\pm n\pi $ where, n = ..., -1, 0, 1, .... .
$\Rightarrow \dfrac{-\theta }{2}=\dfrac{\pi }{2}+2n\pi $ where, n = ..., -1, 0, 1, .... .
$\dfrac{-\theta }{2}=-\dfrac{\pi }{2}-2n\pi $ where, n = ..., -1, 0, 1, .... .
$\Rightarrow \theta =-\pi -n\pi $ where, n = ..., -1, 0, 1, .... .
Now, we will consider $\sin \left( \dfrac{5\theta }{2} \right)=0$. Since, we know that the value of $\sin \left( \pi \right)=0$. Thus, we can write $\sin \left( \dfrac{5\theta }{2} \right)=\sin \left( 0 \right)$.
Now, by the formula $\sin x=\sin y$ we have $x=n\pi $ because we are considering $\sin y=0.$
$\begin{align}
& \Rightarrow \sin \left( \dfrac{5\theta }{2} \right)=\sin \left( 0 \right) \\
& \Rightarrow \dfrac{5\theta }{2}=n\pi \\
& \Rightarrow \theta =\dfrac{2n\pi }{5} \\
\end{align}$
Where n = ..., -1, 0, 1, .... .
Hence, the value of $\theta $ in the equation $\sin \left( \theta \right)+\sin \left( 2\theta \right)+\sin \left( 3\theta \right)+\sin \left( 4\theta \right)=0$ is given by $\theta =\dfrac{-\pi }{2}-2n\pi \,\,,\,\,\theta =2n\pi \,\,,\,\,\theta =\dfrac{-\pi }{2}-2n\pi \,\,,\,\,\theta =-\pi -n\,\,,\,\,\theta =\dfrac{2n\pi }{5}$.
Note: We could have applied the formula $\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$ to the expression $\sin \left( \theta \right)+\sin \left( 2\theta \right)$ instead of $\sin \left( \theta \right)+\sin \left( 3\theta \right)$. But we use it for $\sin \left( \theta \right)+\sin \left( 3\theta \right)$ so that when we get $2\sin \left( \dfrac{\theta +3\theta }{2} \right)\cos \left( \dfrac{\theta -3\theta }{2} \right)$ we could easily solve \[\sin \left( \dfrac{\theta +3\theta }{2} \right)\] as $\sin \left( \dfrac{4\theta }{2} \right)$ or $\sin \left( 2\theta \right)$ which is not at all a complex term. Alternative method of solving $\cos \left( \dfrac{-\theta }{2} \right)=\cos \left( \dfrac{\pi }{2} \right)$ by using the fact that since $\cos \left( \dfrac{\pi }{2} \right)$ is positive in the first and fourth quadrants. So, by considering the first quadrant we have,
$\begin{align}
& \cos \left( \dfrac{-\theta }{2} \right)=cos\left( \dfrac{\pi }{2} \right) \\
& \Rightarrow \left( \dfrac{-\theta }{2} \right)=\dfrac{\pi }{2} \\
& \Rightarrow -\theta =\pi \\
\end{align}$
Where, n = ..., -1, 0, 1, ... .
Complete step-by-step answer:
We will consider the equation given by $\sin \left( \theta \right)+\sin \left( 2\theta \right)+\sin \left( 3\theta \right)+\sin \left( 4\theta \right)=0...(i)$.
We will now interchange the values $\sin \left( \theta \right)$ and $\sin \left( 2\theta \right)$ with each other and $\sin \left( 2\theta \right)$ and $\sin \left( 4\theta \right)$ with each other. Therefore, we have $\left( \sin \left( \theta \right)+\sin \left( 3\theta \right) \right)+\left( \sin \left( 2\theta \right)+\sin \left( 4\theta \right) \right)...(ii)$.
Now, we will apply the trigonometric formula given by $\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$ and apply it to the equation (ii). Thus, we get
$\begin{align}
& \left( \sin \left( \theta \right)+\sin \left( 3\theta \right) \right)+\left( \sin \left( 2\theta \right)+\sin \left( 4\theta \right) \right)=0 \\
& \Rightarrow 2\sin \left( \dfrac{\theta +3\theta }{2} \right)\cos \left( \dfrac{\theta -3\theta }{2} \right)+2\sin \left( \dfrac{2\theta +4\theta }{2} \right)\cos \left( \dfrac{2\theta -4\theta }{2} \right)=0 \\
& \Rightarrow 2\sin \left( \dfrac{4\theta }{2} \right)\cos \left( \dfrac{-2\theta }{2} \right)+2\sin \left( \dfrac{6\theta }{2} \right)\cos \left( \dfrac{-2\theta }{2} \right)=0 \\
& \Rightarrow 2\sin \left( 2\theta \right)\cos \left( -\theta \right)+2\sin \left( 3\theta \right)\cos \left( -\theta \right)=0 \\
\end{align}$
Now, we will take the common terms $2\cos \left( -\theta \right)$ and make it separated from the equation. Thus, we get $2\cos \left( -\theta \right)\left[ \sin \left( 2\theta \right)+\sin \left( 3\theta \right) \right]=0$. Therefore, we can write $\cos \left( -\theta \right)$ and $\sin \left( 2\theta \right)+\sin \left( 3\theta \right)=0$.
Now, we will consider $\cos \left( -\theta \right)=0$.
As the value of $\cos \left( \dfrac{\pi }{2} \right)=0$. Therefore, we can write $\cos \left( -\theta \right)=\cos \left( \dfrac{\pi }{2} \right)$. Therefore, by the formula $\cos \left( x \right)=\cos \left( y \right)$ we have $x=y\pm 2n\pi $ where, n = 0, -1, +1, -2, +2, ... .
$\Rightarrow \cos \left( -\theta \right)=\cos \left( \dfrac{\pi }{2} \right)$ where, n = ..., -1, 0, -1, ... .
$\Rightarrow \left( -\theta \right)=\dfrac{\pi }{2}+2n\pi $ where, n = ..., -1, 0, 1, ... .
Or, $\theta =\dfrac{-\pi }{2}-2n\pi $ where, n = ..., -1, 0, 1, ... .
Now, we will consider $\sin \left( 2\theta \right)+\sin \left( 3\theta \right)=0$. Now, we will apply the formula given by $\begin{align}
& \sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) \\
& \Rightarrow \sin \left( 2\theta \right)+\sin \left( 3\theta \right)=0 \\
& \Rightarrow 2\sin \left( \dfrac{2\theta +3\theta }{2} \right)\cos \left( \dfrac{2\theta -3\theta }{2} \right)=0 \\
& \Rightarrow 2\sin \left( \dfrac{5\theta }{2} \right)cis\left( \dfrac{-\theta }{2} \right)=0 \\
\end{align}$
Now, we have that $\sin \left( \dfrac{5\theta }{2} \right)=0$ and $\cos \left( \dfrac{-\theta }{2} \right)=0$. We will first consider $\cos \left( \dfrac{-\theta }{2} \right)=0$. At this stage we will apply the formula $\cos x=\cos y$. Therefore, we have
$\begin{align}
& \cos \left( \dfrac{-\theta }{2} \right)=0 \\
& \Rightarrow \cos \left( \dfrac{-\theta }{2} \right)=\cos \left( \dfrac{\pi }{2} \right) \\
\end{align}$
This is because we know that the volume of $\cos \left( \dfrac{\pi }{2} \right)=0$. And by the formula $\cos x=\cos y$ we have $x=y\pm n\pi $ where, n = ..., -1, 0, 1, .... .
$\Rightarrow \dfrac{-\theta }{2}=\dfrac{\pi }{2}+2n\pi $ where, n = ..., -1, 0, 1, .... .
$\dfrac{-\theta }{2}=-\dfrac{\pi }{2}-2n\pi $ where, n = ..., -1, 0, 1, .... .
$\Rightarrow \theta =-\pi -n\pi $ where, n = ..., -1, 0, 1, .... .
Now, we will consider $\sin \left( \dfrac{5\theta }{2} \right)=0$. Since, we know that the value of $\sin \left( \pi \right)=0$. Thus, we can write $\sin \left( \dfrac{5\theta }{2} \right)=\sin \left( 0 \right)$.
Now, by the formula $\sin x=\sin y$ we have $x=n\pi $ because we are considering $\sin y=0.$
$\begin{align}
& \Rightarrow \sin \left( \dfrac{5\theta }{2} \right)=\sin \left( 0 \right) \\
& \Rightarrow \dfrac{5\theta }{2}=n\pi \\
& \Rightarrow \theta =\dfrac{2n\pi }{5} \\
\end{align}$
Where n = ..., -1, 0, 1, .... .
Hence, the value of $\theta $ in the equation $\sin \left( \theta \right)+\sin \left( 2\theta \right)+\sin \left( 3\theta \right)+\sin \left( 4\theta \right)=0$ is given by $\theta =\dfrac{-\pi }{2}-2n\pi \,\,,\,\,\theta =2n\pi \,\,,\,\,\theta =\dfrac{-\pi }{2}-2n\pi \,\,,\,\,\theta =-\pi -n\,\,,\,\,\theta =\dfrac{2n\pi }{5}$.
Note: We could have applied the formula $\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$ to the expression $\sin \left( \theta \right)+\sin \left( 2\theta \right)$ instead of $\sin \left( \theta \right)+\sin \left( 3\theta \right)$. But we use it for $\sin \left( \theta \right)+\sin \left( 3\theta \right)$ so that when we get $2\sin \left( \dfrac{\theta +3\theta }{2} \right)\cos \left( \dfrac{\theta -3\theta }{2} \right)$ we could easily solve \[\sin \left( \dfrac{\theta +3\theta }{2} \right)\] as $\sin \left( \dfrac{4\theta }{2} \right)$ or $\sin \left( 2\theta \right)$ which is not at all a complex term. Alternative method of solving $\cos \left( \dfrac{-\theta }{2} \right)=\cos \left( \dfrac{\pi }{2} \right)$ by using the fact that since $\cos \left( \dfrac{\pi }{2} \right)$ is positive in the first and fourth quadrants. So, by considering the first quadrant we have,
$\begin{align}
& \cos \left( \dfrac{-\theta }{2} \right)=cos\left( \dfrac{\pi }{2} \right) \\
& \Rightarrow \left( \dfrac{-\theta }{2} \right)=\dfrac{\pi }{2} \\
& \Rightarrow -\theta =\pi \\
\end{align}$
Where, n = ..., -1, 0, 1, ... .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

