
How to solve the equation $5x - 1 = 3x + 5$?
Answer
561k+ views
Hint: Solve this equation $5x - 1 = 3x + 5$ by separating the variable terms on one side of the equation and the constant term on another side.
We use the addition-subtraction property to transform a given equation to an equivalent equation of the form x = a.
First, add $1$ to each side of the equation and then subtract $3x$ from each side of the equation.
Complete step-by-step answer:
We have to solve the equation $5x - 1 = 3x + 5$.
Basically, we have to find the value of $x$ .
Use the addition-subtraction property to transform a given equation to an equivalent equation of the form x = a
Add $1$ to the each side of the equation,
$5x - 1 + 1 = 3x + 5 + 1$
$ \Rightarrow 5x = 3x + 6$
Subtract $3x$ from each side of the equation.
$5x - 3x = 3x + 6 - 3x$
$ \Rightarrow 5x - 3x = 6$
$ \Rightarrow 2x = 6$
Divide $2$ to each side of the equation.
$ \Rightarrow \dfrac{{2x}}{2} = \dfrac{6}{2}$
$ \Rightarrow x = 3$
Final Answer: The solution of the equation $5x - 1 = 3x + 5$is $x = 3$.
Note:
Substitute $x = 3$ into the equation the right-hand side of equation,
$5(3) - 1 = 15 - 1$
$5(3) - 1 = 14$
Substitute $x = 3$ into the equation the left-hand side of equation,
$3x + 5 = 3(3) + 5$
$3x + 5 = 14$
Since L.H.S. = R.H.S.
The solution of the equation is $x = 3$.
We use the addition-subtraction property to transform a given equation to an equivalent equation of the form x = a.
First, add $1$ to each side of the equation and then subtract $3x$ from each side of the equation.
Complete step-by-step answer:
We have to solve the equation $5x - 1 = 3x + 5$.
Basically, we have to find the value of $x$ .
Use the addition-subtraction property to transform a given equation to an equivalent equation of the form x = a
Add $1$ to the each side of the equation,
$5x - 1 + 1 = 3x + 5 + 1$
$ \Rightarrow 5x = 3x + 6$
Subtract $3x$ from each side of the equation.
$5x - 3x = 3x + 6 - 3x$
$ \Rightarrow 5x - 3x = 6$
$ \Rightarrow 2x = 6$
Divide $2$ to each side of the equation.
$ \Rightarrow \dfrac{{2x}}{2} = \dfrac{6}{2}$
$ \Rightarrow x = 3$
Final Answer: The solution of the equation $5x - 1 = 3x + 5$is $x = 3$.
Note:
Substitute $x = 3$ into the equation the right-hand side of equation,
$5(3) - 1 = 15 - 1$
$5(3) - 1 = 14$
Substitute $x = 3$ into the equation the left-hand side of equation,
$3x + 5 = 3(3) + 5$
$3x + 5 = 14$
Since L.H.S. = R.H.S.
The solution of the equation is $x = 3$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

