
How to solve the equation $5x - 1 = 3x + 5$?
Answer
549.9k+ views
Hint: Solve this equation $5x - 1 = 3x + 5$ by separating the variable terms on one side of the equation and the constant term on another side.
We use the addition-subtraction property to transform a given equation to an equivalent equation of the form x = a.
First, add $1$ to each side of the equation and then subtract $3x$ from each side of the equation.
Complete step-by-step answer:
We have to solve the equation $5x - 1 = 3x + 5$.
Basically, we have to find the value of $x$ .
Use the addition-subtraction property to transform a given equation to an equivalent equation of the form x = a
Add $1$ to the each side of the equation,
$5x - 1 + 1 = 3x + 5 + 1$
$ \Rightarrow 5x = 3x + 6$
Subtract $3x$ from each side of the equation.
$5x - 3x = 3x + 6 - 3x$
$ \Rightarrow 5x - 3x = 6$
$ \Rightarrow 2x = 6$
Divide $2$ to each side of the equation.
$ \Rightarrow \dfrac{{2x}}{2} = \dfrac{6}{2}$
$ \Rightarrow x = 3$
Final Answer: The solution of the equation $5x - 1 = 3x + 5$is $x = 3$.
Note:
Substitute $x = 3$ into the equation the right-hand side of equation,
$5(3) - 1 = 15 - 1$
$5(3) - 1 = 14$
Substitute $x = 3$ into the equation the left-hand side of equation,
$3x + 5 = 3(3) + 5$
$3x + 5 = 14$
Since L.H.S. = R.H.S.
The solution of the equation is $x = 3$.
We use the addition-subtraction property to transform a given equation to an equivalent equation of the form x = a.
First, add $1$ to each side of the equation and then subtract $3x$ from each side of the equation.
Complete step-by-step answer:
We have to solve the equation $5x - 1 = 3x + 5$.
Basically, we have to find the value of $x$ .
Use the addition-subtraction property to transform a given equation to an equivalent equation of the form x = a
Add $1$ to the each side of the equation,
$5x - 1 + 1 = 3x + 5 + 1$
$ \Rightarrow 5x = 3x + 6$
Subtract $3x$ from each side of the equation.
$5x - 3x = 3x + 6 - 3x$
$ \Rightarrow 5x - 3x = 6$
$ \Rightarrow 2x = 6$
Divide $2$ to each side of the equation.
$ \Rightarrow \dfrac{{2x}}{2} = \dfrac{6}{2}$
$ \Rightarrow x = 3$
Final Answer: The solution of the equation $5x - 1 = 3x + 5$is $x = 3$.
Note:
Substitute $x = 3$ into the equation the right-hand side of equation,
$5(3) - 1 = 15 - 1$
$5(3) - 1 = 14$
Substitute $x = 3$ into the equation the left-hand side of equation,
$3x + 5 = 3(3) + 5$
$3x + 5 = 14$
Since L.H.S. = R.H.S.
The solution of the equation is $x = 3$.
Recently Updated Pages
What happens to glucose which enters nephron along class 10 biology CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

When the JanmiKudian Act was passed that granted the class 10 social science CBSE

A sector containing an angle of 120 circ is cut off class 10 maths CBSE

The sum of digits of a two digit number is 13 If t-class-10-maths-ICSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

