
How do you solve the equation $2{{x}^{2}}+5x-3=0$ by using the quadratic formula?
Answer
540.3k+ views
Hint: We have been given a quadratic equation of $x$ as $2{{x}^{2}}+5x-3=0$. We use the quadratic formula to solve the value of the $x$. we have the solution in the form of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ for general equation of $a{{x}^{2}}+bx+c=0$. We put the values and find the solution.
Complete step-by-step solution:
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of $x$ will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$. This is the quadratic equation solving method. The root part $\sqrt{{{b}^{2}}-4ac}$ of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ is called the discriminant of the equation.
In the given equation we have $2{{x}^{2}}+5x-3=0$. The values of a, b, c is $2,5,-3$ respectively.
We put the values and get $x$ as \[x=\dfrac{-5\pm \sqrt{{{5}^{2}}-4\times \left( -3 \right)\times 2}}{2\times 2}=\dfrac{-5\pm \sqrt{49}}{4}=\dfrac{-5\pm 7}{4}=-3,\dfrac{1}{2}\]
The roots of the equation are real numbers.
So, values of x are $x=-3,\dfrac{1}{2}$.
Note: We can also apply the middle-term factoring or grouping to factorise the polynomial.
In the case of $2{{x}^{2}}+5x-3$, we break the middle term $5x$ into two parts of $6x$ and $-x$.
So, $2{{x}^{2}}+5x-3=2{{x}^{2}}+6x-x-3$. We have one condition to check if the grouping is possible or not. If we order the individual elements of the polynomial according to their power of variables, then the multiple of end terms will be equal to the multiple of middle terms.
Here multiplication for both cases gives $-6{{x}^{2}}$. The grouping will be done for $2{{x}^{2}}+6x$ and $-x-3$.
We try to take the common numbers out.
For $2{{x}^{2}}+6x$, we take $2x$ and get $2x\left( x+3 \right)$.
For $-x-3$, we take $-1$ and get $-\left( x+3 \right)$.
The equation becomes \[2{{x}^{2}}+5x-3=2{{x}^{2}}+6x-x-3=2x\left( x+3 \right)-\left( x+3 \right)\].
Both the terms have $\left( x+3 \right)$ in common. We take that term again and get
$\begin{align}
& 2{{x}^{2}}+5x-3 \\
& =2x\left( x+3 \right)-\left( x+3 \right) \\
& =\left( x+3 \right)\left( 2x-1 \right) \\
\end{align}$
Therefore, $\left( x+3 \right)\left( 2x-1 \right)=0$ has multiplication of two polynomials giving a value of 0. This means at least one of them has to be 0.
Therefore, values of x are $x=-3,\dfrac{1}{2}$.
Complete step-by-step solution:
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of $x$ will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$. This is the quadratic equation solving method. The root part $\sqrt{{{b}^{2}}-4ac}$ of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ is called the discriminant of the equation.
In the given equation we have $2{{x}^{2}}+5x-3=0$. The values of a, b, c is $2,5,-3$ respectively.
We put the values and get $x$ as \[x=\dfrac{-5\pm \sqrt{{{5}^{2}}-4\times \left( -3 \right)\times 2}}{2\times 2}=\dfrac{-5\pm \sqrt{49}}{4}=\dfrac{-5\pm 7}{4}=-3,\dfrac{1}{2}\]
The roots of the equation are real numbers.
So, values of x are $x=-3,\dfrac{1}{2}$.
Note: We can also apply the middle-term factoring or grouping to factorise the polynomial.
In the case of $2{{x}^{2}}+5x-3$, we break the middle term $5x$ into two parts of $6x$ and $-x$.
So, $2{{x}^{2}}+5x-3=2{{x}^{2}}+6x-x-3$. We have one condition to check if the grouping is possible or not. If we order the individual elements of the polynomial according to their power of variables, then the multiple of end terms will be equal to the multiple of middle terms.
Here multiplication for both cases gives $-6{{x}^{2}}$. The grouping will be done for $2{{x}^{2}}+6x$ and $-x-3$.
We try to take the common numbers out.
For $2{{x}^{2}}+6x$, we take $2x$ and get $2x\left( x+3 \right)$.
For $-x-3$, we take $-1$ and get $-\left( x+3 \right)$.
The equation becomes \[2{{x}^{2}}+5x-3=2{{x}^{2}}+6x-x-3=2x\left( x+3 \right)-\left( x+3 \right)\].
Both the terms have $\left( x+3 \right)$ in common. We take that term again and get
$\begin{align}
& 2{{x}^{2}}+5x-3 \\
& =2x\left( x+3 \right)-\left( x+3 \right) \\
& =\left( x+3 \right)\left( 2x-1 \right) \\
\end{align}$
Therefore, $\left( x+3 \right)\left( 2x-1 \right)=0$ has multiplication of two polynomials giving a value of 0. This means at least one of them has to be 0.
Therefore, values of x are $x=-3,\dfrac{1}{2}$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

