
How do you solve the equation $2{{x}^{2}}+5x-3=0$ by using the quadratic formula?
Answer
490.5k+ views
Hint: We have been given a quadratic equation of $x$ as $2{{x}^{2}}+5x-3=0$. We use the quadratic formula to solve the value of the $x$. we have the solution in the form of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ for general equation of $a{{x}^{2}}+bx+c=0$. We put the values and find the solution.
Complete step-by-step solution:
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of $x$ will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$. This is the quadratic equation solving method. The root part $\sqrt{{{b}^{2}}-4ac}$ of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ is called the discriminant of the equation.
In the given equation we have $2{{x}^{2}}+5x-3=0$. The values of a, b, c is $2,5,-3$ respectively.
We put the values and get $x$ as \[x=\dfrac{-5\pm \sqrt{{{5}^{2}}-4\times \left( -3 \right)\times 2}}{2\times 2}=\dfrac{-5\pm \sqrt{49}}{4}=\dfrac{-5\pm 7}{4}=-3,\dfrac{1}{2}\]
The roots of the equation are real numbers.
So, values of x are $x=-3,\dfrac{1}{2}$.
Note: We can also apply the middle-term factoring or grouping to factorise the polynomial.
In the case of $2{{x}^{2}}+5x-3$, we break the middle term $5x$ into two parts of $6x$ and $-x$.
So, $2{{x}^{2}}+5x-3=2{{x}^{2}}+6x-x-3$. We have one condition to check if the grouping is possible or not. If we order the individual elements of the polynomial according to their power of variables, then the multiple of end terms will be equal to the multiple of middle terms.
Here multiplication for both cases gives $-6{{x}^{2}}$. The grouping will be done for $2{{x}^{2}}+6x$ and $-x-3$.
We try to take the common numbers out.
For $2{{x}^{2}}+6x$, we take $2x$ and get $2x\left( x+3 \right)$.
For $-x-3$, we take $-1$ and get $-\left( x+3 \right)$.
The equation becomes \[2{{x}^{2}}+5x-3=2{{x}^{2}}+6x-x-3=2x\left( x+3 \right)-\left( x+3 \right)\].
Both the terms have $\left( x+3 \right)$ in common. We take that term again and get
$\begin{align}
& 2{{x}^{2}}+5x-3 \\
& =2x\left( x+3 \right)-\left( x+3 \right) \\
& =\left( x+3 \right)\left( 2x-1 \right) \\
\end{align}$
Therefore, $\left( x+3 \right)\left( 2x-1 \right)=0$ has multiplication of two polynomials giving a value of 0. This means at least one of them has to be 0.
Therefore, values of x are $x=-3,\dfrac{1}{2}$.
Complete step-by-step solution:
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of $x$ will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$. This is the quadratic equation solving method. The root part $\sqrt{{{b}^{2}}-4ac}$ of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ is called the discriminant of the equation.
In the given equation we have $2{{x}^{2}}+5x-3=0$. The values of a, b, c is $2,5,-3$ respectively.
We put the values and get $x$ as \[x=\dfrac{-5\pm \sqrt{{{5}^{2}}-4\times \left( -3 \right)\times 2}}{2\times 2}=\dfrac{-5\pm \sqrt{49}}{4}=\dfrac{-5\pm 7}{4}=-3,\dfrac{1}{2}\]
The roots of the equation are real numbers.
So, values of x are $x=-3,\dfrac{1}{2}$.
Note: We can also apply the middle-term factoring or grouping to factorise the polynomial.
In the case of $2{{x}^{2}}+5x-3$, we break the middle term $5x$ into two parts of $6x$ and $-x$.
So, $2{{x}^{2}}+5x-3=2{{x}^{2}}+6x-x-3$. We have one condition to check if the grouping is possible or not. If we order the individual elements of the polynomial according to their power of variables, then the multiple of end terms will be equal to the multiple of middle terms.
Here multiplication for both cases gives $-6{{x}^{2}}$. The grouping will be done for $2{{x}^{2}}+6x$ and $-x-3$.
We try to take the common numbers out.
For $2{{x}^{2}}+6x$, we take $2x$ and get $2x\left( x+3 \right)$.
For $-x-3$, we take $-1$ and get $-\left( x+3 \right)$.
The equation becomes \[2{{x}^{2}}+5x-3=2{{x}^{2}}+6x-x-3=2x\left( x+3 \right)-\left( x+3 \right)\].
Both the terms have $\left( x+3 \right)$ in common. We take that term again and get
$\begin{align}
& 2{{x}^{2}}+5x-3 \\
& =2x\left( x+3 \right)-\left( x+3 \right) \\
& =\left( x+3 \right)\left( 2x-1 \right) \\
\end{align}$
Therefore, $\left( x+3 \right)\left( 2x-1 \right)=0$ has multiplication of two polynomials giving a value of 0. This means at least one of them has to be 0.
Therefore, values of x are $x=-3,\dfrac{1}{2}$.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Whales are warmblooded animals which live in cold seas class 11 biology CBSE

Compare the Mendeleev and Modern Periodic Tables on class 11 chemistry CBSE

How many quintals are there in one metric ton A 10 class 11 physics CBSE
